Multidimensional and Multiresolution Ensemble Networks for Brain Tumor Segmentation

Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this work, we developed multiple 2D and 3D segmentation models with multiresolution input to segment brain tumor components and then ensembled them to obtain robust segmentation maps. Ensembling reduced overfitting and resulted in a more generalized model. Multiparametric MR images of 335 subjects from the BRATS 2019 challenge were used for training the models. Further, we tested a classical machine learning algorithm with features extracted from the segmentation maps to classify subject survival range. Preliminary results on the BRATS 2019 validation dataset demonstrated excellent performance with DICE scores of 0.898, 0.784, 0.779 for the whole tumor (WT), tumor core (TC), and enhancing tumor (ET), respectively and an accuracy of 34.5% for predicting survival. The Ensemble of multiresolution 2D networks achieved 88.75%, 83.28% and 79.34% dice for WT, TC, and ET respectively in a test dataset of 166 subjects.

Original languageEnglish (US)
Title of host publicationBrainlesion
Subtitle of host publicationGlioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries - 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Revised Selected Papers
EditorsAlessandro Crimi, Spyridon Bakas
PublisherSpringer Science and Business Media Deutschland GmbH
Pages448-457
Number of pages10
ISBN (Print)9783030720834
DOIs
StatePublished - 2021
Event6th International MICCAI Brainlesion Workshop, BrainLes 2020 Held in Conjunction with 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020 - Virtual, Online
Duration: Oct 4 2020Oct 4 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12658 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference6th International MICCAI Brainlesion Workshop, BrainLes 2020 Held in Conjunction with 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020
CityVirtual, Online
Period10/4/2010/4/20

Keywords

  • Brain tumor segmentation
  • Densenet-169
  • Residual inception dense networks
  • Squeezenet
  • Survival prediction

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Multidimensional and Multiresolution Ensemble Networks for Brain Tumor Segmentation'. Together they form a unique fingerprint.

Cite this