Multiple transcriptional regulatory domains in the human immunodeficiency virus type 1 long terminal repeat are involved in basal and E1A/E1B-induced promoter activity

S. Kliewer, J. Garcia, L. Pearson, E. Soultanakis, A. Dasgupta, R. Gaynor

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

The human immunodeficiency virus (HIV) type 1 long terminal repeat (LTR) is the site of activation of the HIV tat protein. However, additional transactivators, such as the adenovirus E1A and herpesvirus ICP0 proteins, have also been shown to be capable of activating the HIV LTR. Analysis of adenovirus mutants indicated that complete transactivation of the HIV LTR was dependent on both the E1A and E1B proteins. To determine which regions of the HIV LTR were important for complete E1A/E1B activation, a variety of oligonucleotide-directed mutations in HIV transcriptional regulatory domains were assayed both in vivo and in vitro. S1 nuclease analysis of RNA prepared after transfection of these HIV constructs into HeLa cells infected with wild-type adenovirus indicated that the enhancer, SP1, TATA, and a portion of the transactivation-responsive element were each required for complete E1A/E1B-mediated activation of the HIV LTR. These same promoter elements were required for both and basal E1A/E1B-induced levels of transcription in in vitro transcription reactions performed with cellular extracts prepared from cells infected with dl434, an E1A/E1B deletion mutant, or wild-type adenovirus. No mutations were found that reduced only E1A/E1B-induced expression without proportionally reducing basal levels of transcription, suggesting that E1A/E1B-mediated induction of the HIV LTR requires multiple promoter elements which are also required for basal transcriptional levels. Unlike activation by the tat protein, there was not a rigid dependence on maintenance of the transactivation-responsive stem base pairing for E1A/E1B-mediated activation either in vivo or in vitro, indicating that activation occurs by a mechanism distinct from that of tat induction.

Original languageEnglish (US)
Pages (from-to)4616-4625
Number of pages10
JournalJournal of virology
Volume63
Issue number11
DOIs
StatePublished - 1989

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint Dive into the research topics of 'Multiple transcriptional regulatory domains in the human immunodeficiency virus type 1 long terminal repeat are involved in basal and E1A/E1B-induced promoter activity'. Together they form a unique fingerprint.

Cite this