Murine trophoblast resists cell-mediated lysis. I. Resistance to allospecific cytotoxic T lymphocytes

F. A. Zuckermann, J. R. Head

Research output: Contribution to journalArticle

55 Citations (Scopus)

Abstract

Research on the mechanisms of nonrejection of the fetoplacental allograft has focused on the tissues composing the fetomaternal interface, of which the placental trophoblast, the tissue directly confronting the maternal environment, is considered a prime candidate responsible for the survival of the fetus. We recently developed a method for isolating murine trophoblast, and found that a proportion of trophoblast cells from mature placentas, cultured for 2 days, express class I antigens on their surface, and this expression can be enhanced in vitro by interferon-α/β (IFN-α/β). In the present study, it was determined that cultured trophoblast cells from day 14 placentas were resistant to allospecific cytotoxic T lymphocytes (allo-CTL), while being susceptible to alloantibody and complement-mediated lysis. The trophoblast cells remained to allo-CTL-mediated lysis despite IFN-mediated enhanced expression of class I H-2 antigens on their surface and the addition of phytohemagglutinin into the assay. Inhibition of protein sysnthesis also had no effect. In contrast, fetal fibroblasts, isolated from the same conceptuses, were readily susceptible to allo-CTL-mediated lysis. That the trophoblast cells do interact with the effector cells was shown by their ability to specifically inhibit the lysis of tumor target cells in a dose-dependent manner. Additionally, trophoblast culture supernatants did not inhibit the lytic activity of allo-CTL, even when concentrated 10- to 25-fold, indicating that a soluble suppressor factor was not inactivating the effector cells. These results suggest that trophoblast cells have a protein synthesis-independent mechanism of resistance to lysis by allo-CTL, which could play an important role in protecting the fetoplacental allograft from maternal immune rejection.

Original languageEnglish (US)
Pages (from-to)2856-2864
Number of pages9
JournalJournal of Immunology
Volume139
Issue number9
StatePublished - 1987

Fingerprint

Trophoblasts
Cytotoxic T-Lymphocytes
Histocompatibility Antigens Class I
Placenta
Allografts
Mothers
H-2 Antigens
Isoantibodies
Phytohemagglutinins
Interferons
Cultured Cells
Proteins
Fetus
Fibroblasts
Research

ASJC Scopus subject areas

  • Immunology

Cite this

Murine trophoblast resists cell-mediated lysis. I. Resistance to allospecific cytotoxic T lymphocytes. / Zuckermann, F. A.; Head, J. R.

In: Journal of Immunology, Vol. 139, No. 9, 1987, p. 2856-2864.

Research output: Contribution to journalArticle

@article{fe4a8b5b98d34c82a863a38da2663e1f,
title = "Murine trophoblast resists cell-mediated lysis. I. Resistance to allospecific cytotoxic T lymphocytes",
abstract = "Research on the mechanisms of nonrejection of the fetoplacental allograft has focused on the tissues composing the fetomaternal interface, of which the placental trophoblast, the tissue directly confronting the maternal environment, is considered a prime candidate responsible for the survival of the fetus. We recently developed a method for isolating murine trophoblast, and found that a proportion of trophoblast cells from mature placentas, cultured for 2 days, express class I antigens on their surface, and this expression can be enhanced in vitro by interferon-α/β (IFN-α/β). In the present study, it was determined that cultured trophoblast cells from day 14 placentas were resistant to allospecific cytotoxic T lymphocytes (allo-CTL), while being susceptible to alloantibody and complement-mediated lysis. The trophoblast cells remained to allo-CTL-mediated lysis despite IFN-mediated enhanced expression of class I H-2 antigens on their surface and the addition of phytohemagglutinin into the assay. Inhibition of protein sysnthesis also had no effect. In contrast, fetal fibroblasts, isolated from the same conceptuses, were readily susceptible to allo-CTL-mediated lysis. That the trophoblast cells do interact with the effector cells was shown by their ability to specifically inhibit the lysis of tumor target cells in a dose-dependent manner. Additionally, trophoblast culture supernatants did not inhibit the lytic activity of allo-CTL, even when concentrated 10- to 25-fold, indicating that a soluble suppressor factor was not inactivating the effector cells. These results suggest that trophoblast cells have a protein synthesis-independent mechanism of resistance to lysis by allo-CTL, which could play an important role in protecting the fetoplacental allograft from maternal immune rejection.",
author = "Zuckermann, {F. A.} and Head, {J. R.}",
year = "1987",
language = "English (US)",
volume = "139",
pages = "2856--2864",
journal = "Journal of Immunology",
issn = "0022-1767",
publisher = "American Association of Immunologists",
number = "9",

}

TY - JOUR

T1 - Murine trophoblast resists cell-mediated lysis. I. Resistance to allospecific cytotoxic T lymphocytes

AU - Zuckermann, F. A.

AU - Head, J. R.

PY - 1987

Y1 - 1987

N2 - Research on the mechanisms of nonrejection of the fetoplacental allograft has focused on the tissues composing the fetomaternal interface, of which the placental trophoblast, the tissue directly confronting the maternal environment, is considered a prime candidate responsible for the survival of the fetus. We recently developed a method for isolating murine trophoblast, and found that a proportion of trophoblast cells from mature placentas, cultured for 2 days, express class I antigens on their surface, and this expression can be enhanced in vitro by interferon-α/β (IFN-α/β). In the present study, it was determined that cultured trophoblast cells from day 14 placentas were resistant to allospecific cytotoxic T lymphocytes (allo-CTL), while being susceptible to alloantibody and complement-mediated lysis. The trophoblast cells remained to allo-CTL-mediated lysis despite IFN-mediated enhanced expression of class I H-2 antigens on their surface and the addition of phytohemagglutinin into the assay. Inhibition of protein sysnthesis also had no effect. In contrast, fetal fibroblasts, isolated from the same conceptuses, were readily susceptible to allo-CTL-mediated lysis. That the trophoblast cells do interact with the effector cells was shown by their ability to specifically inhibit the lysis of tumor target cells in a dose-dependent manner. Additionally, trophoblast culture supernatants did not inhibit the lytic activity of allo-CTL, even when concentrated 10- to 25-fold, indicating that a soluble suppressor factor was not inactivating the effector cells. These results suggest that trophoblast cells have a protein synthesis-independent mechanism of resistance to lysis by allo-CTL, which could play an important role in protecting the fetoplacental allograft from maternal immune rejection.

AB - Research on the mechanisms of nonrejection of the fetoplacental allograft has focused on the tissues composing the fetomaternal interface, of which the placental trophoblast, the tissue directly confronting the maternal environment, is considered a prime candidate responsible for the survival of the fetus. We recently developed a method for isolating murine trophoblast, and found that a proportion of trophoblast cells from mature placentas, cultured for 2 days, express class I antigens on their surface, and this expression can be enhanced in vitro by interferon-α/β (IFN-α/β). In the present study, it was determined that cultured trophoblast cells from day 14 placentas were resistant to allospecific cytotoxic T lymphocytes (allo-CTL), while being susceptible to alloantibody and complement-mediated lysis. The trophoblast cells remained to allo-CTL-mediated lysis despite IFN-mediated enhanced expression of class I H-2 antigens on their surface and the addition of phytohemagglutinin into the assay. Inhibition of protein sysnthesis also had no effect. In contrast, fetal fibroblasts, isolated from the same conceptuses, were readily susceptible to allo-CTL-mediated lysis. That the trophoblast cells do interact with the effector cells was shown by their ability to specifically inhibit the lysis of tumor target cells in a dose-dependent manner. Additionally, trophoblast culture supernatants did not inhibit the lytic activity of allo-CTL, even when concentrated 10- to 25-fold, indicating that a soluble suppressor factor was not inactivating the effector cells. These results suggest that trophoblast cells have a protein synthesis-independent mechanism of resistance to lysis by allo-CTL, which could play an important role in protecting the fetoplacental allograft from maternal immune rejection.

UR - http://www.scopus.com/inward/record.url?scp=0023627927&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023627927&partnerID=8YFLogxK

M3 - Article

VL - 139

SP - 2856

EP - 2864

JO - Journal of Immunology

JF - Journal of Immunology

SN - 0022-1767

IS - 9

ER -