Mutations in the middle of the transmembrane domain reverse the polarity of transport of the influenza virus hemagglutinin in MDCK epithelial cells

Sasa Lin, Hussein Y. Naim, A. Chapin Rodriguez, Michael G. Roth

Research output: Contribution to journalArticle

159 Scopus citations


The composition of the plasma membrane domains of epithelial cells is maintained by biosynthetic pathways that can sort both proteins and lipids into transport vesicles destined for either the apical or basolateral surface. In MDCK cells, the influenza virus hemagglutinin is sorted in the trans-Golgi network into detergent-insoluble, glycosphingolipid-enriched membrane domains that are proposed to be necessary for sorting hemagglutinin to the apical cell surface. Site-directed mutagenesis of the hemagglutinin transmembrane domain was used to test this proposal. The region of the transmembrane domain required for apical transport included the residues most conserved among hemagglutinin subtypes. Several mutants were found to enter detergent-insoluble membranes but were not properly sorted. Replacement of transmembrane residues 520 and 521 with alanines converted the 2A520 mutant hemagglutinin into a basolateral protein. Depleting cell cholesterol reduced the ability of wild-type hemagglutinin to partition into detergent-insoluble membranes but had no effect on apical or basolateral sorting. In contrast, cholesterol depletion allowed random transport of the 2A520 mutant. The mutant appeared to lack sorting information but was prevented from reaching the apical surface when detergent-insoluble membranes were present. Apical sorting of hemagglutinin may require binding of either protein or lipids at the middle of the transmembrane domain and this normally occurs in detergent- insoluble membrane domains. Entry into these domains appears necessary, but not sufficient, for apical sorting.

Original languageEnglish (US)
Pages (from-to)51-57
Number of pages7
JournalJournal of Cell Biology
Issue number1
Publication statusPublished - Jul 13 1998



  • Apical
  • Lipid domain
  • Polarized epithelia
  • Protein traffic
  • Sorting

ASJC Scopus subject areas

  • Cell Biology

Cite this