Neural complexity as a potential translational biomarker for psychosis

Brandon Hager, Albert C. Yang, Roscoe Brady, Shashwath Meda, Brett Clementz, Godfrey D. Pearlson, John A. Sweeney, Carol Tamminga, Matcheri Keshavan

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Background: The adaptability of the human brain to the constantly changing environment is reduced in patients with psychotic disorders, leading to impaired cognitive functions. Brain signal complexity, which may reflect adaptability, can be readily quantified via resting-state functional magnetic resonance imaging (fMRI) signals. We hypothesized that resting-state brain signal complexity is altered in psychotic disorders, and is correlated with cognitive impairment. Methods: We assessed 156 healthy controls (HC) and 330 probands, including 125 patients with psychotic bipolar disorder (BP), 107 patients with schizophrenia (SZ), 98 patients with schizoaffective disorder (SAD) and 230 of their unaffected first-degree relatives (76 BPR, 79 SADR, and 75 SZR) from four sites of the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) consortium. Using multi-scale entropy analysis, we determined whether patients and/or relatives had pathologic differences in complexity of resting-state fMRI signals toward regularity (reduced entropy in all time scales), or toward uncorrelated randomness (increased entropy in fine time scales that decays as the time scale increases) and how these complexity differences might be associated with cognitive impairment. Results: Compared to HC subjects, proband groups showed either decreased complexity toward regularity or toward randomness. SZ probands showed decreased complexity toward regular signal in hypothalamus, and BP probands in left inferior occipital, right precentral and left superior parietal regions, whereas no brain region with decreased complexity toward regularity was found in SAD probands. All proband groups showed significantly increased brain signal randomness in dorsal and ventral prefrontal cortex (PFC), and unaffected relatives showed no complexity differences in PFC regions. SZ had the largest area of involvement in both dorsal and ventral PFC. BP and SAD probands shared increased brain signal randomness in ventral medial PFC, BP and SZ probands shared increased brain signal randomness in ventral lateral PFC, whereas SAD and SZ probands shared increased brain signal randomness in dorsal medial PFC. Only SZ showed increased brain signal randomness in dorsal lateral PFC. The increased brain signal randomness in dorsal or ventral PFC was weakly associated with reduced cognitive performance in psychotic probands. Conclusion: These observations support the loss of brain complexity hypothesis in psychotic probands. Furthermore, we found significant differences as well as overlaps of pathologic brain signal complexity between psychotic probands by DSM diagnoses, thus suggesting a biological approach to categorizing psychosis based on functional neuroimaging data.

Original languageEnglish (US)
JournalJournal of Affective Disorders
DOIs
StateAccepted/In press - May 11 2016

Fingerprint

Psychotic Disorders
Biomarkers
Prefrontal Cortex
Brain
Schizophrenia
Bipolar Disorder
Entropy
Magnetic Resonance Imaging
Parietal Lobe
Functional Neuroimaging
Cognition
Hypothalamus
Healthy Volunteers
Phenotype

Keywords

  • Multiscale entropy
  • Neural complexity
  • Psychosis
  • Schizophrenia, schizoaffective disorder, psychotic bipolar disorder

ASJC Scopus subject areas

  • Clinical Psychology
  • Psychiatry and Mental health

Cite this

Hager, B., Yang, A. C., Brady, R., Meda, S., Clementz, B., Pearlson, G. D., ... Keshavan, M. (Accepted/In press). Neural complexity as a potential translational biomarker for psychosis. Journal of Affective Disorders. https://doi.org/10.1016/j.jad.2016.10.016

Neural complexity as a potential translational biomarker for psychosis. / Hager, Brandon; Yang, Albert C.; Brady, Roscoe; Meda, Shashwath; Clementz, Brett; Pearlson, Godfrey D.; Sweeney, John A.; Tamminga, Carol; Keshavan, Matcheri.

In: Journal of Affective Disorders, 11.05.2016.

Research output: Contribution to journalArticle

Hager, Brandon ; Yang, Albert C. ; Brady, Roscoe ; Meda, Shashwath ; Clementz, Brett ; Pearlson, Godfrey D. ; Sweeney, John A. ; Tamminga, Carol ; Keshavan, Matcheri. / Neural complexity as a potential translational biomarker for psychosis. In: Journal of Affective Disorders. 2016.
@article{f26c769ac51b4647a49700f4ef16996a,
title = "Neural complexity as a potential translational biomarker for psychosis",
abstract = "Background: The adaptability of the human brain to the constantly changing environment is reduced in patients with psychotic disorders, leading to impaired cognitive functions. Brain signal complexity, which may reflect adaptability, can be readily quantified via resting-state functional magnetic resonance imaging (fMRI) signals. We hypothesized that resting-state brain signal complexity is altered in psychotic disorders, and is correlated with cognitive impairment. Methods: We assessed 156 healthy controls (HC) and 330 probands, including 125 patients with psychotic bipolar disorder (BP), 107 patients with schizophrenia (SZ), 98 patients with schizoaffective disorder (SAD) and 230 of their unaffected first-degree relatives (76 BPR, 79 SADR, and 75 SZR) from four sites of the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) consortium. Using multi-scale entropy analysis, we determined whether patients and/or relatives had pathologic differences in complexity of resting-state fMRI signals toward regularity (reduced entropy in all time scales), or toward uncorrelated randomness (increased entropy in fine time scales that decays as the time scale increases) and how these complexity differences might be associated with cognitive impairment. Results: Compared to HC subjects, proband groups showed either decreased complexity toward regularity or toward randomness. SZ probands showed decreased complexity toward regular signal in hypothalamus, and BP probands in left inferior occipital, right precentral and left superior parietal regions, whereas no brain region with decreased complexity toward regularity was found in SAD probands. All proband groups showed significantly increased brain signal randomness in dorsal and ventral prefrontal cortex (PFC), and unaffected relatives showed no complexity differences in PFC regions. SZ had the largest area of involvement in both dorsal and ventral PFC. BP and SAD probands shared increased brain signal randomness in ventral medial PFC, BP and SZ probands shared increased brain signal randomness in ventral lateral PFC, whereas SAD and SZ probands shared increased brain signal randomness in dorsal medial PFC. Only SZ showed increased brain signal randomness in dorsal lateral PFC. The increased brain signal randomness in dorsal or ventral PFC was weakly associated with reduced cognitive performance in psychotic probands. Conclusion: These observations support the loss of brain complexity hypothesis in psychotic probands. Furthermore, we found significant differences as well as overlaps of pathologic brain signal complexity between psychotic probands by DSM diagnoses, thus suggesting a biological approach to categorizing psychosis based on functional neuroimaging data.",
keywords = "Multiscale entropy, Neural complexity, Psychosis, Schizophrenia, schizoaffective disorder, psychotic bipolar disorder",
author = "Brandon Hager and Yang, {Albert C.} and Roscoe Brady and Shashwath Meda and Brett Clementz and Pearlson, {Godfrey D.} and Sweeney, {John A.} and Carol Tamminga and Matcheri Keshavan",
year = "2016",
month = "5",
day = "11",
doi = "10.1016/j.jad.2016.10.016",
language = "English (US)",
journal = "Journal of Affective Disorders",
issn = "0165-0327",
publisher = "Elsevier",

}

TY - JOUR

T1 - Neural complexity as a potential translational biomarker for psychosis

AU - Hager, Brandon

AU - Yang, Albert C.

AU - Brady, Roscoe

AU - Meda, Shashwath

AU - Clementz, Brett

AU - Pearlson, Godfrey D.

AU - Sweeney, John A.

AU - Tamminga, Carol

AU - Keshavan, Matcheri

PY - 2016/5/11

Y1 - 2016/5/11

N2 - Background: The adaptability of the human brain to the constantly changing environment is reduced in patients with psychotic disorders, leading to impaired cognitive functions. Brain signal complexity, which may reflect adaptability, can be readily quantified via resting-state functional magnetic resonance imaging (fMRI) signals. We hypothesized that resting-state brain signal complexity is altered in psychotic disorders, and is correlated with cognitive impairment. Methods: We assessed 156 healthy controls (HC) and 330 probands, including 125 patients with psychotic bipolar disorder (BP), 107 patients with schizophrenia (SZ), 98 patients with schizoaffective disorder (SAD) and 230 of their unaffected first-degree relatives (76 BPR, 79 SADR, and 75 SZR) from four sites of the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) consortium. Using multi-scale entropy analysis, we determined whether patients and/or relatives had pathologic differences in complexity of resting-state fMRI signals toward regularity (reduced entropy in all time scales), or toward uncorrelated randomness (increased entropy in fine time scales that decays as the time scale increases) and how these complexity differences might be associated with cognitive impairment. Results: Compared to HC subjects, proband groups showed either decreased complexity toward regularity or toward randomness. SZ probands showed decreased complexity toward regular signal in hypothalamus, and BP probands in left inferior occipital, right precentral and left superior parietal regions, whereas no brain region with decreased complexity toward regularity was found in SAD probands. All proband groups showed significantly increased brain signal randomness in dorsal and ventral prefrontal cortex (PFC), and unaffected relatives showed no complexity differences in PFC regions. SZ had the largest area of involvement in both dorsal and ventral PFC. BP and SAD probands shared increased brain signal randomness in ventral medial PFC, BP and SZ probands shared increased brain signal randomness in ventral lateral PFC, whereas SAD and SZ probands shared increased brain signal randomness in dorsal medial PFC. Only SZ showed increased brain signal randomness in dorsal lateral PFC. The increased brain signal randomness in dorsal or ventral PFC was weakly associated with reduced cognitive performance in psychotic probands. Conclusion: These observations support the loss of brain complexity hypothesis in psychotic probands. Furthermore, we found significant differences as well as overlaps of pathologic brain signal complexity between psychotic probands by DSM diagnoses, thus suggesting a biological approach to categorizing psychosis based on functional neuroimaging data.

AB - Background: The adaptability of the human brain to the constantly changing environment is reduced in patients with psychotic disorders, leading to impaired cognitive functions. Brain signal complexity, which may reflect adaptability, can be readily quantified via resting-state functional magnetic resonance imaging (fMRI) signals. We hypothesized that resting-state brain signal complexity is altered in psychotic disorders, and is correlated with cognitive impairment. Methods: We assessed 156 healthy controls (HC) and 330 probands, including 125 patients with psychotic bipolar disorder (BP), 107 patients with schizophrenia (SZ), 98 patients with schizoaffective disorder (SAD) and 230 of their unaffected first-degree relatives (76 BPR, 79 SADR, and 75 SZR) from four sites of the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) consortium. Using multi-scale entropy analysis, we determined whether patients and/or relatives had pathologic differences in complexity of resting-state fMRI signals toward regularity (reduced entropy in all time scales), or toward uncorrelated randomness (increased entropy in fine time scales that decays as the time scale increases) and how these complexity differences might be associated with cognitive impairment. Results: Compared to HC subjects, proband groups showed either decreased complexity toward regularity or toward randomness. SZ probands showed decreased complexity toward regular signal in hypothalamus, and BP probands in left inferior occipital, right precentral and left superior parietal regions, whereas no brain region with decreased complexity toward regularity was found in SAD probands. All proband groups showed significantly increased brain signal randomness in dorsal and ventral prefrontal cortex (PFC), and unaffected relatives showed no complexity differences in PFC regions. SZ had the largest area of involvement in both dorsal and ventral PFC. BP and SAD probands shared increased brain signal randomness in ventral medial PFC, BP and SZ probands shared increased brain signal randomness in ventral lateral PFC, whereas SAD and SZ probands shared increased brain signal randomness in dorsal medial PFC. Only SZ showed increased brain signal randomness in dorsal lateral PFC. The increased brain signal randomness in dorsal or ventral PFC was weakly associated with reduced cognitive performance in psychotic probands. Conclusion: These observations support the loss of brain complexity hypothesis in psychotic probands. Furthermore, we found significant differences as well as overlaps of pathologic brain signal complexity between psychotic probands by DSM diagnoses, thus suggesting a biological approach to categorizing psychosis based on functional neuroimaging data.

KW - Multiscale entropy

KW - Neural complexity

KW - Psychosis

KW - Schizophrenia, schizoaffective disorder, psychotic bipolar disorder

UR - http://www.scopus.com/inward/record.url?scp=85003864883&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85003864883&partnerID=8YFLogxK

U2 - 10.1016/j.jad.2016.10.016

DO - 10.1016/j.jad.2016.10.016

M3 - Article

JO - Journal of Affective Disorders

JF - Journal of Affective Disorders

SN - 0165-0327

ER -