NMDA receptor activation by spontaneous glutamatergic neurotransmission

Felipe Espinosa, Ege T. Kavalali

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

Under physiological conditions N-methyl-D-aspartate (NMDA) receptor activation requires coincidence of presynaptic glutamate release and postsynaptic depolarization due to the voltage-dependent block of these receptors by extracellular Mg2+. Therefore spontaneous neurotransmission in the absence of action potential firing is not expected to lead to significant NMDA receptor activation. Here we tested this assumption in layer IV neurons in neocortex at their resting membrane potential (approximately -67 mV). In long-duration stable recordings, we averaged a large number of miniature excitatory postsynaptic currents (mEPSCs, >100) before or after application of DL-2 amino 5-phosphonovaleric acid, a specific blocker of NMDA receptors. The difference between the two mEPSC waveforms showed that the NMDA current component comprises ∼20% of the charge transfer during an average mEPSC detected at rest. Importantly, the contribution of the NMDA component was markedly enhanced at membrane potentials expected for the depolarized up states (approximately -50 mV) that cortical neurons show during slow oscillations in vivo. In addition, partial block of the α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid (AMPA) receptor component of the mEPSCs did not cause a significant reduction in the NMDA component, indicating that potential AMPA receptor-driven local depolarizations did not drive NMDA receptor activity at rest. Collectively these results indicate that NMDA receptors significantly contribute to signaling at rest in the absence of dendritic depolarizations or concomitant AMPA receptor activity.

Original languageEnglish (US)
Pages (from-to)2290-2296
Number of pages7
JournalJournal of Neurophysiology
Volume101
Issue number5
DOIs
StatePublished - May 2009

Fingerprint

N-Methyl-D-Aspartate Receptors
Synaptic Transmission
N-Methylaspartate
Membrane Potentials
2-Amino-5-phosphonovalerate
Neurons
Excitatory Postsynaptic Potentials
Neocortex
Action Potentials
Glutamic Acid
bucide
propionic acid

ASJC Scopus subject areas

  • Physiology
  • Neuroscience(all)

Cite this

NMDA receptor activation by spontaneous glutamatergic neurotransmission. / Espinosa, Felipe; Kavalali, Ege T.

In: Journal of Neurophysiology, Vol. 101, No. 5, 05.2009, p. 2290-2296.

Research output: Contribution to journalArticle

@article{d1570329ef084580bcfc06737c49ed8a,
title = "NMDA receptor activation by spontaneous glutamatergic neurotransmission",
abstract = "Under physiological conditions N-methyl-D-aspartate (NMDA) receptor activation requires coincidence of presynaptic glutamate release and postsynaptic depolarization due to the voltage-dependent block of these receptors by extracellular Mg2+. Therefore spontaneous neurotransmission in the absence of action potential firing is not expected to lead to significant NMDA receptor activation. Here we tested this assumption in layer IV neurons in neocortex at their resting membrane potential (approximately -67 mV). In long-duration stable recordings, we averaged a large number of miniature excitatory postsynaptic currents (mEPSCs, >100) before or after application of DL-2 amino 5-phosphonovaleric acid, a specific blocker of NMDA receptors. The difference between the two mEPSC waveforms showed that the NMDA current component comprises ∼20{\%} of the charge transfer during an average mEPSC detected at rest. Importantly, the contribution of the NMDA component was markedly enhanced at membrane potentials expected for the depolarized up states (approximately -50 mV) that cortical neurons show during slow oscillations in vivo. In addition, partial block of the α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid (AMPA) receptor component of the mEPSCs did not cause a significant reduction in the NMDA component, indicating that potential AMPA receptor-driven local depolarizations did not drive NMDA receptor activity at rest. Collectively these results indicate that NMDA receptors significantly contribute to signaling at rest in the absence of dendritic depolarizations or concomitant AMPA receptor activity.",
author = "Felipe Espinosa and Kavalali, {Ege T.}",
year = "2009",
month = "5",
doi = "10.1152/jn.90754.2008",
language = "English (US)",
volume = "101",
pages = "2290--2296",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "5",

}

TY - JOUR

T1 - NMDA receptor activation by spontaneous glutamatergic neurotransmission

AU - Espinosa, Felipe

AU - Kavalali, Ege T.

PY - 2009/5

Y1 - 2009/5

N2 - Under physiological conditions N-methyl-D-aspartate (NMDA) receptor activation requires coincidence of presynaptic glutamate release and postsynaptic depolarization due to the voltage-dependent block of these receptors by extracellular Mg2+. Therefore spontaneous neurotransmission in the absence of action potential firing is not expected to lead to significant NMDA receptor activation. Here we tested this assumption in layer IV neurons in neocortex at their resting membrane potential (approximately -67 mV). In long-duration stable recordings, we averaged a large number of miniature excitatory postsynaptic currents (mEPSCs, >100) before or after application of DL-2 amino 5-phosphonovaleric acid, a specific blocker of NMDA receptors. The difference between the two mEPSC waveforms showed that the NMDA current component comprises ∼20% of the charge transfer during an average mEPSC detected at rest. Importantly, the contribution of the NMDA component was markedly enhanced at membrane potentials expected for the depolarized up states (approximately -50 mV) that cortical neurons show during slow oscillations in vivo. In addition, partial block of the α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid (AMPA) receptor component of the mEPSCs did not cause a significant reduction in the NMDA component, indicating that potential AMPA receptor-driven local depolarizations did not drive NMDA receptor activity at rest. Collectively these results indicate that NMDA receptors significantly contribute to signaling at rest in the absence of dendritic depolarizations or concomitant AMPA receptor activity.

AB - Under physiological conditions N-methyl-D-aspartate (NMDA) receptor activation requires coincidence of presynaptic glutamate release and postsynaptic depolarization due to the voltage-dependent block of these receptors by extracellular Mg2+. Therefore spontaneous neurotransmission in the absence of action potential firing is not expected to lead to significant NMDA receptor activation. Here we tested this assumption in layer IV neurons in neocortex at their resting membrane potential (approximately -67 mV). In long-duration stable recordings, we averaged a large number of miniature excitatory postsynaptic currents (mEPSCs, >100) before or after application of DL-2 amino 5-phosphonovaleric acid, a specific blocker of NMDA receptors. The difference between the two mEPSC waveforms showed that the NMDA current component comprises ∼20% of the charge transfer during an average mEPSC detected at rest. Importantly, the contribution of the NMDA component was markedly enhanced at membrane potentials expected for the depolarized up states (approximately -50 mV) that cortical neurons show during slow oscillations in vivo. In addition, partial block of the α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid (AMPA) receptor component of the mEPSCs did not cause a significant reduction in the NMDA component, indicating that potential AMPA receptor-driven local depolarizations did not drive NMDA receptor activity at rest. Collectively these results indicate that NMDA receptors significantly contribute to signaling at rest in the absence of dendritic depolarizations or concomitant AMPA receptor activity.

UR - http://www.scopus.com/inward/record.url?scp=65649133604&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=65649133604&partnerID=8YFLogxK

U2 - 10.1152/jn.90754.2008

DO - 10.1152/jn.90754.2008

M3 - Article

VL - 101

SP - 2290

EP - 2296

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 5

ER -