On-target inhibition of tumor fermentative glycolysis as visualized by hyperpolarized pyruvate

Pankaj Seth, Aaron Grant, Jian Tang, Elena Vinogradov, Xioaen Wang, Robert Lenkinski, Vikas P. Sukhatme

Research output: Contribution to journalArticlepeer-review

73 Scopus citations

Abstract

Many cancer cells display the Warburg effect, that is, enhanced glycolysis followed by fermentation (conversion of pyruvate to lactate). Recently, the molecular basis for these effects has started to be elucidated, and the upregulation of the lactate dehydrogenase A (LDH-A) isoform of lactate dehydrogenase is felt to be a major molecular mediator of this phenomenon. Moreover, LDH-A expression in tumor tissue and LDH-A levels in blood portend a bad prognosis, and LDH-A blockade can lead to tumor growth inhibition in tumor transplant models. We have extended existing data (some of which were published during the time when we were carrying out our studies) in two important ways: 1) inhibition of LDH-A in a glycolytic lung cancer cell line results in reactive oxygen species- mediated apoptosis and increased sensitivity to the chemotherapeutic drug paclitaxel and 2) inhibition of fermentative glycolysis can also be accomplished by activation of the pyruvate dehydrogenase complex by the drugdichloroacetate, now undergoing clinical trials, and that this phenomenon can be monitored in vivo in a noninvasive real-time manner through magnetic resonance spectroscopy using hyperpolarized pyruvate. Collectively, these data suggest that in vivo effects of drugs that redirect the fate of pyruvate, and hence are aimed at reversing the Warburg effect, could be monitored through the use of hyperpolarized magnetic resonance spectroscopy, a method that is scalable to human use.

Original languageEnglish (US)
Pages (from-to)60-71
Number of pages12
JournalNeoplasia
Volume13
Issue number1
DOIs
StatePublished - Jan 2011

ASJC Scopus subject areas

  • Cancer Research

Fingerprint

Dive into the research topics of 'On-target inhibition of tumor fermentative glycolysis as visualized by hyperpolarized pyruvate'. Together they form a unique fingerprint.

Cite this