On the capabilities of a multi-modality 3D bioprinter for customized biomedical devices

Prashanth Ravi, Panos S. Shiakolas, Tre Welch, Tushar Saini, Kristine Guleserian, Ankit K. Batra

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

Currently, there is a major shift in medical device fabrication research towards layer-by-layer additive manufacturing technologies; mainly owing to the relatively quick transition from a solid model (.STL file) to an actual prototype. The current manuscript introduces a Custom Multi-Modality 3D Bioprinter (CMMB) developed in-house, combining the Fused Filament Fabrication (FFF), Photo Polymerization (PP), Viscous Extrusion (VE), and Inkjet (IJ) printing technologies onto a single additive manufacturing platform. Methodologies to address limitation in the ability to customize construct properties layer-by-layer and to incorporate multiple materials in a single construct have been evaluated using open source 3D printing softwares Slic3r and Repetier-Host. Such customization empowers the user to fabricate constructs with tailorable anisotropic properties by combining different print technologies and materials. To this end, procedures which allow the integration of more than one distinct modality of the CMMB during a single print session were developed and evaluated, and are discussed. The current setup of the CMMB provides the capability to fabricate personalized medical devices using patient data from an MRI or a CT scan. Initial experiments and fabricated constructs demonstrate the potential of the CMMB for research in diverse application areas within biomedical engineering.

Original languageEnglish (US)
Title of host publicationAdvanced Manufacturing
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791857359
DOIs
StatePublished - 2015
EventASME 2015 International Mechanical Engineering Congress and Exposition, IMECE 2015 - Houston, United States
Duration: Nov 13 2015Nov 19 2015

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume2A-2015

Other

OtherASME 2015 International Mechanical Engineering Congress and Exposition, IMECE 2015
Country/TerritoryUnited States
CityHouston
Period11/13/1511/19/15

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'On the capabilities of a multi-modality 3D bioprinter for customized biomedical devices'. Together they form a unique fingerprint.

Cite this