On the generation, maintenance, and correction of metabolic alkalosis.

H. R. Jacobson, D. W. Seldin

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

The study of derangements in salt, water, and acid-base homeostasis frequently reveals much about renal transport mechanisms and their regulation. The study of one such derangement, metabolic alkalosis, has played a special role in contributing to our knowledge of renal function. Elucidation of the kidney's role in the generation, maintenance, and correction of metabolic alkalosis has provided information about proximal tubule transport and its response to volume contraction, volume expansion, and K depletion. Also, distal nephron transport and its response to mineralocorticoids and dietary anion composition has been clarified by studies on metabolic alkalosis. Finally, we have learned about the importance of Na delivery to distal nephron sites and the avidity with which these distal nephron sites reabsorb sodium. Indeed, reviews on the subject of metabolic alkalosis have presented thorough and convincing physiologic arguments on how the kidney helps to generate and maintain this derangement in acid-base balance. However, more recent experimental work has led some to reconsider how the kidney functions in metabolic alkalosis. In an earlier paper in this journal [Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F217-F221, 1983], Galla, Bonduris, and Luke present an argument for the correction of chloride-depletion alkalosis in the rat without volume expansion.(ABSTRACT TRUNCATED AT 250 WORDS)

Original languageEnglish (US)
JournalThe American journal of physiology
Volume245
Issue number4
StatePublished - Oct 1983

Fingerprint

Alkalosis
Maintenance
Kidney
Nephrons
Mineralocorticoids
Acid-Base Equilibrium
Electrolytes
Anions
Chlorides
Homeostasis
Salts
Sodium
Acids
Water

ASJC Scopus subject areas

  • Medicine(all)

Cite this

On the generation, maintenance, and correction of metabolic alkalosis. / Jacobson, H. R.; Seldin, D. W.

In: The American journal of physiology, Vol. 245, No. 4, 10.1983.

Research output: Contribution to journalArticle

@article{a1976a1c70b5422ca73a08adbac363a3,
title = "On the generation, maintenance, and correction of metabolic alkalosis.",
abstract = "The study of derangements in salt, water, and acid-base homeostasis frequently reveals much about renal transport mechanisms and their regulation. The study of one such derangement, metabolic alkalosis, has played a special role in contributing to our knowledge of renal function. Elucidation of the kidney's role in the generation, maintenance, and correction of metabolic alkalosis has provided information about proximal tubule transport and its response to volume contraction, volume expansion, and K depletion. Also, distal nephron transport and its response to mineralocorticoids and dietary anion composition has been clarified by studies on metabolic alkalosis. Finally, we have learned about the importance of Na delivery to distal nephron sites and the avidity with which these distal nephron sites reabsorb sodium. Indeed, reviews on the subject of metabolic alkalosis have presented thorough and convincing physiologic arguments on how the kidney helps to generate and maintain this derangement in acid-base balance. However, more recent experimental work has led some to reconsider how the kidney functions in metabolic alkalosis. In an earlier paper in this journal [Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F217-F221, 1983], Galla, Bonduris, and Luke present an argument for the correction of chloride-depletion alkalosis in the rat without volume expansion.(ABSTRACT TRUNCATED AT 250 WORDS)",
author = "Jacobson, {H. R.} and Seldin, {D. W.}",
year = "1983",
month = "10",
language = "English (US)",
volume = "245",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - On the generation, maintenance, and correction of metabolic alkalosis.

AU - Jacobson, H. R.

AU - Seldin, D. W.

PY - 1983/10

Y1 - 1983/10

N2 - The study of derangements in salt, water, and acid-base homeostasis frequently reveals much about renal transport mechanisms and their regulation. The study of one such derangement, metabolic alkalosis, has played a special role in contributing to our knowledge of renal function. Elucidation of the kidney's role in the generation, maintenance, and correction of metabolic alkalosis has provided information about proximal tubule transport and its response to volume contraction, volume expansion, and K depletion. Also, distal nephron transport and its response to mineralocorticoids and dietary anion composition has been clarified by studies on metabolic alkalosis. Finally, we have learned about the importance of Na delivery to distal nephron sites and the avidity with which these distal nephron sites reabsorb sodium. Indeed, reviews on the subject of metabolic alkalosis have presented thorough and convincing physiologic arguments on how the kidney helps to generate and maintain this derangement in acid-base balance. However, more recent experimental work has led some to reconsider how the kidney functions in metabolic alkalosis. In an earlier paper in this journal [Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F217-F221, 1983], Galla, Bonduris, and Luke present an argument for the correction of chloride-depletion alkalosis in the rat without volume expansion.(ABSTRACT TRUNCATED AT 250 WORDS)

AB - The study of derangements in salt, water, and acid-base homeostasis frequently reveals much about renal transport mechanisms and their regulation. The study of one such derangement, metabolic alkalosis, has played a special role in contributing to our knowledge of renal function. Elucidation of the kidney's role in the generation, maintenance, and correction of metabolic alkalosis has provided information about proximal tubule transport and its response to volume contraction, volume expansion, and K depletion. Also, distal nephron transport and its response to mineralocorticoids and dietary anion composition has been clarified by studies on metabolic alkalosis. Finally, we have learned about the importance of Na delivery to distal nephron sites and the avidity with which these distal nephron sites reabsorb sodium. Indeed, reviews on the subject of metabolic alkalosis have presented thorough and convincing physiologic arguments on how the kidney helps to generate and maintain this derangement in acid-base balance. However, more recent experimental work has led some to reconsider how the kidney functions in metabolic alkalosis. In an earlier paper in this journal [Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F217-F221, 1983], Galla, Bonduris, and Luke present an argument for the correction of chloride-depletion alkalosis in the rat without volume expansion.(ABSTRACT TRUNCATED AT 250 WORDS)

UR - http://www.scopus.com/inward/record.url?scp=0020842441&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0020842441&partnerID=8YFLogxK

M3 - Article

VL - 245

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 4

ER -