On the potential uses of ultrasound imaging for the detection of anesthesia-induced neuronal apoptosis in the developing brain

Swapnil Dolui, Shreya Reddy, June Bryan De La Pena, Jane Song, Haowei Tai, Zachary Campbell, Kenneth Hoyt

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Several preclinical studies have shown that prolonged exposure of a young developing brain to anesthetic agents can be detail use of H-scan ultrasound (US) imaging for the detection of early neurotoxic effects associated with isoflurane gas anesthesia in a neonatal animal model. Neonatal mice were exposed to either isoflurane (N=14) or normal oxygen (control, N=4) for 2 h. Animals were then returned to their mothers for 48 h. After euthanasia, neonatal brains were excised and underwent 3D US imaging using a small animal US scanner (Vevo 3100, FUIJIFILM VisualSonics Inc). Raw radiofrequency data was acquired for processing and formation of the 3D H-scan US images. In addition to whole brain segmentation, an atlas-based approach was performed in order to analyze changes in the hippocampus and cortex regions, i.e. behavioral and neurocognitive function-dependent regions of the brain. Experimental ex vivo results indicate that the developing neonatal brain is extremely sensitive to isoflurane exposure. More specifically, mean H-scan US image intensity from the entire brain volume was found to be significantly higher in the isoflurane group when compared to control measurements (11.3pm 0.04 %, p=0.001). The cortex and hippocampal regions of the brain also demonstrated substantial sensitivity towards the neurotoxicity of isoflurane. Compared to control brain tissue measurements, H-scan US image intensity levels were 15.3pm 0.06 % (p=0.01) and 14.9pm 0.06 % (p=0.001) higher in the cortex and hippocampal regions, respectively, after exposure to isoflurane anesthesia for 2 h. Overall, our initial findings reveal that 3D H-scan US imaging can detect differences in neonatal brain tissue exposed to either isoflurane or control gas.

Original languageEnglish (US)
Title of host publicationIUS 2020 - International Ultrasonics Symposium, Proceedings
PublisherIEEE Computer Society
ISBN (Electronic)9781728154480
DOIs
StatePublished - Sep 7 2020
Event2020 IEEE International Ultrasonics Symposium, IUS 2020 - Las Vegas, United States
Duration: Sep 7 2020Sep 11 2020

Publication series

NameIEEE International Ultrasonics Symposium, IUS
Volume2020-September
ISSN (Print)1948-5719
ISSN (Electronic)1948-5727

Conference

Conference2020 IEEE International Ultrasonics Symposium, IUS 2020
Country/TerritoryUnited States
CityLas Vegas
Period9/7/209/11/20

Keywords

  • Apoptosis
  • H-scan ultrasound
  • Neurotoxicity
  • Tissue characterization

ASJC Scopus subject areas

  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'On the potential uses of ultrasound imaging for the detection of anesthesia-induced neuronal apoptosis in the developing brain'. Together they form a unique fingerprint.

Cite this