One-Hit Wonders and 2-Hit Tubers: A Second-Hit to TSC2 Causes Tuber-Like Cells in Spheroids

Sonal Goswami, Jenny Hsieh

Research output: Contribution to journalComment/debate

1 Scopus citations

Abstract

Genetically Engineered Human Cortical Spheroid Models of Tuberous Sclerosis Blair JD, Hockemeyer D, Bateup HS. Nat Med. 2018;24(10):1568-1578. doi:10.1038/s41591-018-0139-y. Epub 2018 Aug 20. PubMed PMID: 30127391; PubMed Central PMCID: PMC6261470. Tuberous sclerosis complex (TSC) is a multisystem developmental disorder caused by mutations in the TSC1 or TSC2 genes, whose protein products are negative regulators of mechanistic target of rapamycin complex 1 signaling. Hallmark pathologies of TSC are cortical tubers—regions of dysmorphic, disorganized neurons, and glia in the cortex that are linked to epileptogenesis. To determine the developmental origin of tuber cells, we established human cellular models of TSC by CRISPR–Cas9-mediated gene editing of TSC1 or TSC2 in human pluripotent stem cells (hPSCs). Using heterozygous TSC2 hPSCs with a conditional mutation in the functional allele, we show that mosaic biallelic inactivation during neural progenitor expansion is necessary for the formation of dysplastic cells and increased glia production in 3-dimensional cortical spheroids. Our findings provide support for the second-hit model of cortical tuber formation and suggest that variable developmental timing of somatic mutations could contribute to the heterogeneity in the neurological presentation of TSC.

Original languageEnglish (US)
Pages (from-to)49-50
Number of pages2
JournalEpilepsy Currents
Volume19
Issue number1
DOIs
StatePublished - Jan 1 2019

    Fingerprint

ASJC Scopus subject areas

  • Clinical Neurology

Cite this