Ontogeny of circadian organization in the rat

Shin Yamazaki, Tomoko Yoshikawa, Elizabeth W. Biscoe, Rika Numano, Lauren M. Gallaspy, Stacy Soulsby, Evagelia Papadimas, Pinar Pezuk, Susan E. Doyle, Hajime Tei, Yoshiyuki Sakaki, Gene D. Block, Michael Menaker

Research output: Contribution to journalArticle

52 Scopus citations

Abstract

The mammalian circadian system is orchestrated by a master pacemaker in the brain, but many peripheral tissues also contain independent or quasi-independent circadian oscillators. The adaptive significance of clocks in these structures must lie, in large part, in the phase relationships between the constituent oscillators and their micro- and macroenvironments. To examine the relationship between postnatal development, which is dependent on endogenous programs and maternal/environmental influences, and the phase of circadian oscillators, the authors assessed the circadian phase of pineal, liver, lung, adrenal, and thyroid tissues cultured from Period 1-luciferase (Per1-luc ) rat pups of various postnatal ages. The liver, thyroid, and pineal were rhythmic at birth, but the phases of their Per1-luc expression rhythms shifted remarkably during development. To determine if the timing of the phase shift in each tissue could be the result of changing environmental conditions, the behavior of pups and their mothers was monitored. The circadian phase of the liver shifted from the day to night around postnatal day (P) 22 as the pups nursed less during the light and instead ate solid food during the dark. Furthermore, the phase of Per1-luc expression in liver cultures from nursing neonates could be shifted experimentally from the day to the night by allowing pups access to the dam only during the dark. Peak Per1-luc expression also shifted from midday to early night in thyroid cultures at about P20, concurrent with the shift in eating times. The phase of Per1-luc expression in the pineal gland shifted from day to night coincident with its sympathetic innervation at around P5. Per1-luc expression was rhythmic in adrenal cultures and peaked around the time of lights-off throughout development; however, the amplitude of the rhythm increased at P25. Lung cultures were completely arrhythmic until P12 when the pups began to leave the nest. Taken together, the data suggest that the molecular machinery that generates circadian oscillations matures at different rates in different tissues and that the phase of at least some peripheral organs is malleable and may shift as the organ's function changes during development.

Original languageEnglish (US)
Pages (from-to)55-63
Number of pages9
JournalJournal of Biological Rhythms
Volume24
Issue number1
DOIs
StatePublished - Feb 2009

Keywords

  • Circadian rhythms
  • Development
  • Luciferase reporter
  • Mammalian
  • Period1
  • Peripheral clocks
  • Suprachiasmatic nucleus

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Ontogeny of circadian organization in the rat'. Together they form a unique fingerprint.

  • Cite this

    Yamazaki, S., Yoshikawa, T., Biscoe, E. W., Numano, R., Gallaspy, L. M., Soulsby, S., Papadimas, E., Pezuk, P., Doyle, S. E., Tei, H., Sakaki, Y., Block, G. D., & Menaker, M. (2009). Ontogeny of circadian organization in the rat. Journal of Biological Rhythms, 24(1), 55-63. https://doi.org/10.1177/0748730408328438