Ontogeny of rabbit proximal tubule urea permeability

Research output: Contribution to journalArticle

7 Scopus citations

Abstract

Urea transport in the proximal tubule is passive and is dependent on the epithelial permeability. The present study examined the maturation of urea permeability (Purea) in in vitro perfused proximal convoluted tubules (PCT) and basolateral membrane vesicles (BLMV) from rabbit renal cortex. Urea transport was lower in neonatal than adult PCT at both 37 and 25°C. The PCT Purea was also lower in the neonates than the adults (37°C: 45.4 ± 10.8 vs. 88.5 ± 15.2 × 10-6 cm/s, P < 0.05; 25°C: 28.5 ± 6.9 vs. 55.3 ± 10.4 × 10-6 cm/s; P < 0.05). The activation energy for PCT Purea was not different between the neonatal and adult groups. BLMV Purea was determined by measuring vesicle shrinkage, due to efflux of urea, using a stop-flow instrument. Neonatal BLMV Purea was not different from adult BLMV Purea at 37°C [1.14 ± 0.05 × 10-6 vs. 1.25 ± 0.05 × 10-6 cm/s; P = not significant (NS)] or 25°C (0.94 ± 0.06 vs. 1.05 ± 0.10 × 10-6 cm/s; P = NS). There was no effect of 250 μM phloretin, an inhibitor of the urea transporter, on Purea in either adult or neonatal BLMV. The activation energy for urea diffusion was also identical in the neonatal and adult BLMV. These findings in the BLMV are in contrast to the brush-border membrane vesicles (BBMV) where we have previously demonstrated that urea transport is lower in the neonate than the adult. Urea transport is lower in the neonatal proximal tubule than the adult. This is due to a lower rate of apical membrane urea transport, whereas basolateral urea transport is the same in neonates and adults. The lower Purea in neonatal proximal tubules may play a role in overall urea excretion and in developing and maintaining a high medullary urea concentration and thus in the ability to concentrate the urine during renal maturation.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Regulatory Integrative and Comparative Physiology
Volume280
Issue number6 49-6
Publication statusPublished - 2001

    Fingerprint

Keywords

  • Apical membrane
  • Glycerol
  • Stop-flow kinetics
  • Transport

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Cite this