OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands

Utpal Pal, Xiaofeng Yang, Manchuan Chen, Linda K. Bockenstedt, John F. Anderson, Richard A. Flavell, Michael V. Norgard, Erol Fikrig

Research output: Contribution to journalArticlepeer-review

289 Scopus citations

Abstract

Outer surface protein C (OspC) is a differentially expressed major surface lipoprotein of Borrelia burgdorferi. ospC is swiftly upregulated when spirochetes leave the Ixodes scapularis tick gut, migrate to the salivary gland, and exit the arthropod vector. Here we show that OspC strongly binds to the tick salivary gland, suggesting a role for OspC in spirochete adherence to this tissue. In vivo studies using a murine model of Lyme borreliosis showed that while OspC F(ab)2 fragments did not influence either the viability of spirochetes or ospC gene expression, they did interfere with B. burgdorferi invasion of tick salivary glands. We then generated ospC knockout spirochetes in an infectious clone of B. burgdorferi and examined them within the vector. OspC-deficient or wild-type spirochetes persisted equally within the gut of unfed ticks and multiplied during the tick engorgement; however, unlike wild-type B. burgdorferi, the mutants were unable to invade salivary glands. Salivary gland colonization of OspC-deficient spirochetes was completely restored when this mutant was complemented in trans with a plasmid harboring the wild-type ospC gene. These studies conclusively demonstrate the importance of OspC in the invasion of tick salivary glands by B. burgdorferi, a critical step in the transmission of spirochetes from the arthropod vector to the mammalian host.

Original languageEnglish (US)
Pages (from-to)220-230
Number of pages11
JournalJournal of Clinical Investigation
Volume113
Issue number2
DOIs
StatePublished - Jan 2004

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands'. Together they form a unique fingerprint.

Cite this