Paving the axonal highway: From stem cells to myelin repair

Raniero L. Peru, Nicole Mandrycky, Brahim Nait-Oumesmar, Q. Richard Lu

Research output: Contribution to journalArticle

22 Scopus citations

Abstract

Multiple sclerosis (MS), a demyelinating disorder of the central nervous system (CNS), remains among the most prominent and devastating diseases in contemporary neurology. Despite remarkable advances in anti-inflammatory therapies, the inefficiency or failure of myelin-forming oligodendrocytes to remyelinate axons and preserve axonal integrity remains a major impediment for the repair of MS lesions. To this end, the enhancement of remyelination through endogenous and exogenous repair mechanisms and the prevention of axonal degeneration are critical objectives for myelin repair therapies. Thus, recent advances in uncovering myelinating cell sources and the intrinsic and extrinsic factors that govern neural progenitor differentiation and myelination may pave a way to novel strategies for myelin regeneration. The scope of this review is to discuss the potential sources of stem/progenitor cells for CNS remyelination and the molecular mechanisms underlying oligodendrocyte myelination.

Original languageEnglish (US)
Pages (from-to)304-318
Number of pages15
JournalStem Cell Reviews
Volume4
Issue number4
DOIs
Publication statusPublished - Dec 2008

    Fingerprint

Keywords

  • Central nervous system
  • Multiple sclerosis
  • Myelin repair
  • Myelination
  • Oligodendrocytes
  • Regeneration
  • Stem cells
  • Transcriptional regulation

ASJC Scopus subject areas

  • Developmental Biology
  • Cancer Research

Cite this

Peru, R. L., Mandrycky, N., Nait-Oumesmar, B., & Lu, Q. R. (2008). Paving the axonal highway: From stem cells to myelin repair. Stem Cell Reviews, 4(4), 304-318. https://doi.org/10.1007/s12015-008-9043-z