Peroxidasin Deficiency Re-programs Macrophages Toward Pro-fibrolysis Function and Promotes Collagen Resolution in Liver

Mozhdeh Sojoodi, Derek J. Erstad, Stephen C. Barrett, Shadi Salloum, Shijia Zhu, Tongqi Qian, Selene Colon, Eric M. Gale, Veronica Clavijo Jordan, Yongtao Wang, Shen Li, Bahar Ataeinia, Sasan Jalilifiroozinezhad, Michael Lanuti, Lawrence Zukerberg, Peter Caravan, Yujin Hoshida, Raymond T. Chung, Gautam Bhave, Georg M. LauerBryan C. Fuchs, Kenneth K. Tanabe

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Background & Aims: During liver fibrosis, tissue repair mechanisms replace necrotic tissue with highly stabilized extracellular matrix proteins. Extracellular matrix stabilization influences the speed of tissue recovery. Here, we studied the expression and function of peroxidasin (PXDN), a peroxidase that uses hydrogen peroxide to cross-link collagen IV during liver fibrosis progression and regression. Methods: Mouse models of liver fibrosis and cirrhosis patients were analyzed for the expression of PXDN in liver and serum. Pxdn-/- and Pxdn+/+ mice were either treated with carbon tetrachloride for 6 weeks to generate toxin-induced fibrosis or fed with a choline-deficient L-amino acid-defined high-fat diet for 16 weeks to create nonalcoholic fatty liver disease fibrosis. Liver histology, quantitative real-time polymerase chain reaction, collagen content, flowcytometry and immunostaining of immune cells, RNA-sequencing, and liver function tests were analyzed. In vivo imaging of liver reactive oxygen species (ROS) was performed using a redox-active iron complex, Fe-PyC3A. Results: In human and mouse cirrhotic tissue, PXDN is expressed by stellate cells and is secreted into fibrotic areas. In patients with nonalcoholic fatty liver disease, serum levels of PXDN increased significantly. In both mouse models of liver fibrosis, PXDN deficiency resulted in elevated monocyte and pro-fibrolysis macrophage recruitment into fibrotic bands and caused decreased accumulation of cross-linked collagens. In Pxdn-/- mice, collagen fibers were loosely organized, an atypical phenotype that is reversible upon macrophage depletion. Elevated ROS in Pxdn-/- livers was observed, which can result in activation of hypoxic signaling cascades and may affect signaling pathways involved in macrophage polarization such as TNF-a via NF-kB. Fibrosis resolution in Pxdn-/- mice was associated with significant decrease in collagen content and improved liver function. Conclusion: PXDN deficiency is associated with increased ROS levels and a hypoxic liver microenvironment that can regulate recruitment and programming of pro-resolution macrophages. Our data implicate the importance of the liver microenvironment in macrophage programming during liver fibrosis and suggest a novel pathway that is involved in the resolution of scar tissue.

Original languageEnglish (US)
Pages (from-to)1483-1509
Number of pages27
JournalCMGH
Volume13
Issue number5
DOIs
StatePublished - Jan 2022

Keywords

  • Fibrosis
  • Liver
  • Macrophages
  • Peroxidasin

ASJC Scopus subject areas

  • Hepatology
  • Gastroenterology

Fingerprint

Dive into the research topics of 'Peroxidasin Deficiency Re-programs Macrophages Toward Pro-fibrolysis Function and Promotes Collagen Resolution in Liver'. Together they form a unique fingerprint.

Cite this