Peroxisome proliferator–activated receptor γ down-regulation mediates the inhibitory effect of d-δ-tocotrienol on the differentiation of murine 3T3-F442A preadipocytes

Sheida Torabi, Hoda Yeganehjoo, Chwan Li Shen, Huanbiao Mo

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Tocotrienols accelerate the degradation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase that catalyzes the biosynthesis of mevalonate; the latter is essential for preadipocyte differentiation. Tocotrienols also down-regulate peroxisome proliferator–activated receptor γ (PPARγ), a key regulator of adipocyte differentiation. We hypothesized that mevalonate deprivation and PPARγ down-regulation mediate d-δ-tocotrienol–induced inhibition of adipocyte differentiation. The objectives of this study were to determine the effect of d-δ-tocotrienol on 3T3-F442A preadipocyte differentiation and the involvement of PPARγ and mevalonate. Murine 3T3-F442A preadipocytes were incubated with d-δ-tocotrienol (2.5-10 μmol/L) for 8 days. AdipoRed assay and Oil Red O staining showed that d-δ-tocotrienol dose-dependently reduced the intracellular triglyceride content. Concomitantly, d-δ-tocotrienol dose-dependently inhibited glucose uptake by 3T3-F442A cells and the expression of GLUT4, HMG CoA reductase, and p-Akt proteins. The effects of d-δ-tocotrienol on intracellular triglyceride content and glucose uptake were attenuated by rosiglitazone, an agonist of PPARγ, but not supplemental mevalonate (100 μmol/L). In contrast, mevalonate, but not rosiglitazone, reversed the effects of lovastatin, a competitive inhibitor of HMG CoA reductase shown to inhibit adipocyte differentiation via mevalonate deprivation. Trypan blue staining revealed no changes in cell viability after a 48-hour incubation of 3T3-F442A cells with d-δ-tocotrienol (0-80 μmol/L), suggesting that the adipogenesis-suppressive activity of d-δ-tocotrienol was independent of cytotoxicity. In conclusion, these findings demonstrate the antiadipogenic effect of d-δ-tocotrienol via PPARγ down-regulation.

Original languageEnglish (US)
Pages (from-to)1345-1352
Number of pages8
JournalNutrition Research
Volume36
Issue number12
DOIs
StatePublished - Dec 1 2016

Fingerprint

Tocotrienols
Peroxisomes
Down-Regulation
Mevalonic Acid
rosiglitazone
Adipocytes
3T3 Cells
Oxidoreductases
Triglycerides
Staining and Labeling
Glucose
Lovastatin
Adipogenesis
Trypan Blue
Cell Survival

Keywords

  • Adipocyte
  • Lovastatin
  • Mevalonate
  • PPARγ
  • Tocotrienol

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Endocrinology
  • Nutrition and Dietetics

Cite this

Peroxisome proliferator–activated receptor γ down-regulation mediates the inhibitory effect of d-δ-tocotrienol on the differentiation of murine 3T3-F442A preadipocytes. / Torabi, Sheida; Yeganehjoo, Hoda; Shen, Chwan Li; Mo, Huanbiao.

In: Nutrition Research, Vol. 36, No. 12, 01.12.2016, p. 1345-1352.

Research output: Contribution to journalArticle

@article{927f41271811463aa2f9e2be35db9dd1,
title = "Peroxisome proliferator–activated receptor γ down-regulation mediates the inhibitory effect of d-δ-tocotrienol on the differentiation of murine 3T3-F442A preadipocytes",
abstract = "Tocotrienols accelerate the degradation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase that catalyzes the biosynthesis of mevalonate; the latter is essential for preadipocyte differentiation. Tocotrienols also down-regulate peroxisome proliferator–activated receptor γ (PPARγ), a key regulator of adipocyte differentiation. We hypothesized that mevalonate deprivation and PPARγ down-regulation mediate d-δ-tocotrienol–induced inhibition of adipocyte differentiation. The objectives of this study were to determine the effect of d-δ-tocotrienol on 3T3-F442A preadipocyte differentiation and the involvement of PPARγ and mevalonate. Murine 3T3-F442A preadipocytes were incubated with d-δ-tocotrienol (2.5-10 μmol/L) for 8 days. AdipoRed assay and Oil Red O staining showed that d-δ-tocotrienol dose-dependently reduced the intracellular triglyceride content. Concomitantly, d-δ-tocotrienol dose-dependently inhibited glucose uptake by 3T3-F442A cells and the expression of GLUT4, HMG CoA reductase, and p-Akt proteins. The effects of d-δ-tocotrienol on intracellular triglyceride content and glucose uptake were attenuated by rosiglitazone, an agonist of PPARγ, but not supplemental mevalonate (100 μmol/L). In contrast, mevalonate, but not rosiglitazone, reversed the effects of lovastatin, a competitive inhibitor of HMG CoA reductase shown to inhibit adipocyte differentiation via mevalonate deprivation. Trypan blue staining revealed no changes in cell viability after a 48-hour incubation of 3T3-F442A cells with d-δ-tocotrienol (0-80 μmol/L), suggesting that the adipogenesis-suppressive activity of d-δ-tocotrienol was independent of cytotoxicity. In conclusion, these findings demonstrate the antiadipogenic effect of d-δ-tocotrienol via PPARγ down-regulation.",
keywords = "Adipocyte, Lovastatin, Mevalonate, PPARγ, Tocotrienol",
author = "Sheida Torabi and Hoda Yeganehjoo and Shen, {Chwan Li} and Huanbiao Mo",
year = "2016",
month = "12",
day = "1",
doi = "10.1016/j.nutres.2016.11.001",
language = "English (US)",
volume = "36",
pages = "1345--1352",
journal = "Nutrition Research",
issn = "0271-5317",
publisher = "Elsevier Inc.",
number = "12",

}

TY - JOUR

T1 - Peroxisome proliferator–activated receptor γ down-regulation mediates the inhibitory effect of d-δ-tocotrienol on the differentiation of murine 3T3-F442A preadipocytes

AU - Torabi, Sheida

AU - Yeganehjoo, Hoda

AU - Shen, Chwan Li

AU - Mo, Huanbiao

PY - 2016/12/1

Y1 - 2016/12/1

N2 - Tocotrienols accelerate the degradation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase that catalyzes the biosynthesis of mevalonate; the latter is essential for preadipocyte differentiation. Tocotrienols also down-regulate peroxisome proliferator–activated receptor γ (PPARγ), a key regulator of adipocyte differentiation. We hypothesized that mevalonate deprivation and PPARγ down-regulation mediate d-δ-tocotrienol–induced inhibition of adipocyte differentiation. The objectives of this study were to determine the effect of d-δ-tocotrienol on 3T3-F442A preadipocyte differentiation and the involvement of PPARγ and mevalonate. Murine 3T3-F442A preadipocytes were incubated with d-δ-tocotrienol (2.5-10 μmol/L) for 8 days. AdipoRed assay and Oil Red O staining showed that d-δ-tocotrienol dose-dependently reduced the intracellular triglyceride content. Concomitantly, d-δ-tocotrienol dose-dependently inhibited glucose uptake by 3T3-F442A cells and the expression of GLUT4, HMG CoA reductase, and p-Akt proteins. The effects of d-δ-tocotrienol on intracellular triglyceride content and glucose uptake were attenuated by rosiglitazone, an agonist of PPARγ, but not supplemental mevalonate (100 μmol/L). In contrast, mevalonate, but not rosiglitazone, reversed the effects of lovastatin, a competitive inhibitor of HMG CoA reductase shown to inhibit adipocyte differentiation via mevalonate deprivation. Trypan blue staining revealed no changes in cell viability after a 48-hour incubation of 3T3-F442A cells with d-δ-tocotrienol (0-80 μmol/L), suggesting that the adipogenesis-suppressive activity of d-δ-tocotrienol was independent of cytotoxicity. In conclusion, these findings demonstrate the antiadipogenic effect of d-δ-tocotrienol via PPARγ down-regulation.

AB - Tocotrienols accelerate the degradation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase that catalyzes the biosynthesis of mevalonate; the latter is essential for preadipocyte differentiation. Tocotrienols also down-regulate peroxisome proliferator–activated receptor γ (PPARγ), a key regulator of adipocyte differentiation. We hypothesized that mevalonate deprivation and PPARγ down-regulation mediate d-δ-tocotrienol–induced inhibition of adipocyte differentiation. The objectives of this study were to determine the effect of d-δ-tocotrienol on 3T3-F442A preadipocyte differentiation and the involvement of PPARγ and mevalonate. Murine 3T3-F442A preadipocytes were incubated with d-δ-tocotrienol (2.5-10 μmol/L) for 8 days. AdipoRed assay and Oil Red O staining showed that d-δ-tocotrienol dose-dependently reduced the intracellular triglyceride content. Concomitantly, d-δ-tocotrienol dose-dependently inhibited glucose uptake by 3T3-F442A cells and the expression of GLUT4, HMG CoA reductase, and p-Akt proteins. The effects of d-δ-tocotrienol on intracellular triglyceride content and glucose uptake were attenuated by rosiglitazone, an agonist of PPARγ, but not supplemental mevalonate (100 μmol/L). In contrast, mevalonate, but not rosiglitazone, reversed the effects of lovastatin, a competitive inhibitor of HMG CoA reductase shown to inhibit adipocyte differentiation via mevalonate deprivation. Trypan blue staining revealed no changes in cell viability after a 48-hour incubation of 3T3-F442A cells with d-δ-tocotrienol (0-80 μmol/L), suggesting that the adipogenesis-suppressive activity of d-δ-tocotrienol was independent of cytotoxicity. In conclusion, these findings demonstrate the antiadipogenic effect of d-δ-tocotrienol via PPARγ down-regulation.

KW - Adipocyte

KW - Lovastatin

KW - Mevalonate

KW - PPARγ

KW - Tocotrienol

UR - http://www.scopus.com/inward/record.url?scp=85006802478&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85006802478&partnerID=8YFLogxK

U2 - 10.1016/j.nutres.2016.11.001

DO - 10.1016/j.nutres.2016.11.001

M3 - Article

VL - 36

SP - 1345

EP - 1352

JO - Nutrition Research

JF - Nutrition Research

SN - 0271-5317

IS - 12

ER -