Persistent reduction of conduction velocity and myelinated axon damage in vibrated rat tail nerves

Michael A. Loffredo, Ji Geng Yan, Dennis Kao, Ling Zhang Lin, Hani S. Matloub, Danny A. Riley

Research output: Contribution to journalArticlepeer-review

22 Scopus citations


Prolonged hand-transmitted vibration exposure in the workplace has been recognized for almost a century to cause neurodegenerative and vasospastic disease. Persistence of the diseased state for years after cessation of tool use is of grave concern. To understand persistence of vibration injury, the present study examined recovery of nerve conduction velocity and structural damage of myelinated axons in a rat tail vibration model. Both 7 and 14 days of vibration (4 h/day) decreased conduction velocity. The decrease correlated directly with the increased percentage of disrupted myelinated axons. The total number of myelinated axons was unchanged. During 2 months of recovery, conduction velocity returned to control level after 7-day vibration but remained decreased after 14-day vibration. The rat tail model provides insight into understanding the persistence of neural deficits in hand-arm vibration syndrome.

Original languageEnglish (US)
Pages (from-to)770-775
Number of pages6
JournalMuscle and Nerve
Issue number6
StatePublished - Jun 1 2009


  • Demyelination
  • Hand-arm vibration syndrome
  • Nerve edema
  • Occupational raynaud disease
  • Peripheral nerve

ASJC Scopus subject areas

  • Physiology
  • Clinical Neurology
  • Cellular and Molecular Neuroscience
  • Physiology (medical)


Dive into the research topics of 'Persistent reduction of conduction velocity and myelinated axon damage in vibrated rat tail nerves'. Together they form a unique fingerprint.

Cite this