Phenotypic Heterogeneity in Body Fat Distribution in Patients with Congenital Generalized Lipodystrophy Caused by Mutations in the AGPAT2 or Seipin Genes

Vinaya Simha, Abhimanyu Garg

Research output: Contribution to journalArticle

106 Citations (Scopus)

Abstract

Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive syndrome characterized by extreme paucity of adipose tissue since birth, acanthosis nigricans, severe insulin resistance, marked hypertriglyceridemia, and early-onset diabetes mellitus. Recently, we reported mutations in the 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) gene in CGL pedigrees linked to chromosome 9q34 (CGL1 subtype), and mutations in the Seipin gene were reported in pedigrees linked to chromosome 11q13 (CGL2 subtype). Whether the two subtypes have differences in body fat distribution has not been investigated. We, therefore, compared whole-body adipose tissue distribution by magnetic resonance imaging in 10 CGL patients, of whom seven (six females, one male) had CGL1 and three (two males, one female) had CGL2. Both subtypes had marked lack of metabolically active adipose tissue located at most sc, intermuscular, bone marrow, intraabdominal, and intrathoracic regions. Paucity of mechanical adipose tissue in the palms, soles, orbits, scalp, and periarticular regions was noted in CGL2, whereas it was well preserved in CGL1 patients. We conclude that CGL patients with Seipin mutations have a more severe lack of body fat, which affects both metabolically active and mechanical adipose tissue, compared with patients with mutations in the AGPAT2 gene.

Original languageEnglish (US)
Pages (from-to)5433-5437
Number of pages5
JournalJournal of Clinical Endocrinology and Metabolism
Volume88
Issue number11
DOIs
StatePublished - Nov 2003

Fingerprint

1-Acylglycerol-3-Phosphate O-Acyltransferase
Congenital Generalized Lipodystrophy
Body Fat Distribution
Adipose Tissue
Genes
Fats
Tissue
Mutation
Chromosomes
Pedigree
Acanthosis Nigricans
Magnetic resonance
Medical problems
Hypertriglyceridemia
Orbit
Tissue Distribution
Scalp
Bone
Orbits
Insulin Resistance

ASJC Scopus subject areas

  • Biochemistry
  • Endocrinology, Diabetes and Metabolism

Cite this

@article{78229a4ea6124d48821dc60df0a29825,
title = "Phenotypic Heterogeneity in Body Fat Distribution in Patients with Congenital Generalized Lipodystrophy Caused by Mutations in the AGPAT2 or Seipin Genes",
abstract = "Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive syndrome characterized by extreme paucity of adipose tissue since birth, acanthosis nigricans, severe insulin resistance, marked hypertriglyceridemia, and early-onset diabetes mellitus. Recently, we reported mutations in the 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) gene in CGL pedigrees linked to chromosome 9q34 (CGL1 subtype), and mutations in the Seipin gene were reported in pedigrees linked to chromosome 11q13 (CGL2 subtype). Whether the two subtypes have differences in body fat distribution has not been investigated. We, therefore, compared whole-body adipose tissue distribution by magnetic resonance imaging in 10 CGL patients, of whom seven (six females, one male) had CGL1 and three (two males, one female) had CGL2. Both subtypes had marked lack of metabolically active adipose tissue located at most sc, intermuscular, bone marrow, intraabdominal, and intrathoracic regions. Paucity of mechanical adipose tissue in the palms, soles, orbits, scalp, and periarticular regions was noted in CGL2, whereas it was well preserved in CGL1 patients. We conclude that CGL patients with Seipin mutations have a more severe lack of body fat, which affects both metabolically active and mechanical adipose tissue, compared with patients with mutations in the AGPAT2 gene.",
author = "Vinaya Simha and Abhimanyu Garg",
year = "2003",
month = "11",
doi = "10.1210/jc.2003-030835",
language = "English (US)",
volume = "88",
pages = "5433--5437",
journal = "Journal of Clinical Endocrinology and Metabolism",
issn = "0021-972X",
publisher = "The Endocrine Society",
number = "11",

}

TY - JOUR

T1 - Phenotypic Heterogeneity in Body Fat Distribution in Patients with Congenital Generalized Lipodystrophy Caused by Mutations in the AGPAT2 or Seipin Genes

AU - Simha, Vinaya

AU - Garg, Abhimanyu

PY - 2003/11

Y1 - 2003/11

N2 - Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive syndrome characterized by extreme paucity of adipose tissue since birth, acanthosis nigricans, severe insulin resistance, marked hypertriglyceridemia, and early-onset diabetes mellitus. Recently, we reported mutations in the 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) gene in CGL pedigrees linked to chromosome 9q34 (CGL1 subtype), and mutations in the Seipin gene were reported in pedigrees linked to chromosome 11q13 (CGL2 subtype). Whether the two subtypes have differences in body fat distribution has not been investigated. We, therefore, compared whole-body adipose tissue distribution by magnetic resonance imaging in 10 CGL patients, of whom seven (six females, one male) had CGL1 and three (two males, one female) had CGL2. Both subtypes had marked lack of metabolically active adipose tissue located at most sc, intermuscular, bone marrow, intraabdominal, and intrathoracic regions. Paucity of mechanical adipose tissue in the palms, soles, orbits, scalp, and periarticular regions was noted in CGL2, whereas it was well preserved in CGL1 patients. We conclude that CGL patients with Seipin mutations have a more severe lack of body fat, which affects both metabolically active and mechanical adipose tissue, compared with patients with mutations in the AGPAT2 gene.

AB - Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive syndrome characterized by extreme paucity of adipose tissue since birth, acanthosis nigricans, severe insulin resistance, marked hypertriglyceridemia, and early-onset diabetes mellitus. Recently, we reported mutations in the 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) gene in CGL pedigrees linked to chromosome 9q34 (CGL1 subtype), and mutations in the Seipin gene were reported in pedigrees linked to chromosome 11q13 (CGL2 subtype). Whether the two subtypes have differences in body fat distribution has not been investigated. We, therefore, compared whole-body adipose tissue distribution by magnetic resonance imaging in 10 CGL patients, of whom seven (six females, one male) had CGL1 and three (two males, one female) had CGL2. Both subtypes had marked lack of metabolically active adipose tissue located at most sc, intermuscular, bone marrow, intraabdominal, and intrathoracic regions. Paucity of mechanical adipose tissue in the palms, soles, orbits, scalp, and periarticular regions was noted in CGL2, whereas it was well preserved in CGL1 patients. We conclude that CGL patients with Seipin mutations have a more severe lack of body fat, which affects both metabolically active and mechanical adipose tissue, compared with patients with mutations in the AGPAT2 gene.

UR - http://www.scopus.com/inward/record.url?scp=0344442411&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0344442411&partnerID=8YFLogxK

U2 - 10.1210/jc.2003-030835

DO - 10.1210/jc.2003-030835

M3 - Article

C2 - 14602785

AN - SCOPUS:0344442411

VL - 88

SP - 5433

EP - 5437

JO - Journal of Clinical Endocrinology and Metabolism

JF - Journal of Clinical Endocrinology and Metabolism

SN - 0021-972X

IS - 11

ER -