Photon-induced near-field electron microscopy (PINEM)

Theoretical and experimental

Sang Tae Park, Milo Lin, Ahmed H. Zewail

Research output: Contribution to journalArticle

98 Citations (Scopus)

Abstract

Electron imaging in space and time is achieved in microscopy with timed (near relativistic) electron packets of picometer wavelength coincident with light pulses of femtosecond duration. The photons (with an energy of a few electronvolts) are used to impulsively heat or excite the specimen so that the evolution of structures from their nonequilibrium state can be followed in real time. As such, and at relatively low fluences, there is no interaction between the electrons and the photons; certainly that is the case in vacuum because energy-momentum conservation is not possible. In the presence of nanostructures and at higher fluences, energy-momentum conservation is possible and the electron packet can either gain or lose light quanta. Recently, it was reported that, when only electrons with gained energy are filtered, near-field imaging enables the visualization of nanoscale particles and interfaces with enhanced contrast (Barwick et al 2009 Nature 462 902). To explore a variety of applications, it is important to express, through analytical formulation, the key parameters involved in this photon-induced near-field electron microscopy (PINEM) and to predict the associated phenomena of, e.g., forty-photon absorption by the electron packet. In this paper, we give an account of the theoretical and experimental results of PINEM. In particular, the time-dependent quantum solution for ultrafast electron packets in the nanostructure scattered electromagnetic (near) field is solved in the high kinetic energy limit to obtain the evolution of the incident electron packet into a superposition of discrete momentum wavelets. The characteristic length and time scales of the halo of electron-photon coupling are discussed in the framework of Rayleigh and Mie scatterings, providing the dependence of the PINEM effect on size, polarization, material and spatiotemporal localization. We also provide a simple classical description that is based on features of plasmonics. A major part of this paper is devoted to the comparisons between the theoretical results and the recently obtained experimental findings about the imaging of materials and biological systems.

Original languageEnglish (US)
Article number123028
JournalNew Journal of Physics
Volume12
DOIs
StatePublished - Dec 1 2010

Fingerprint

near fields
electron microscopy
photons
electrons
kinetic energy
conservation
fluence
Mie scattering
Rayleigh scattering
halos
electromagnetism
microscopy
momentum
formulations
heat
vacuum
energy
polarization
pulses
wavelengths

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Photon-induced near-field electron microscopy (PINEM) : Theoretical and experimental. / Park, Sang Tae; Lin, Milo; Zewail, Ahmed H.

In: New Journal of Physics, Vol. 12, 123028, 01.12.2010.

Research output: Contribution to journalArticle

@article{0e30016fb03542bba5a319d08eff8c13,
title = "Photon-induced near-field electron microscopy (PINEM): Theoretical and experimental",
abstract = "Electron imaging in space and time is achieved in microscopy with timed (near relativistic) electron packets of picometer wavelength coincident with light pulses of femtosecond duration. The photons (with an energy of a few electronvolts) are used to impulsively heat or excite the specimen so that the evolution of structures from their nonequilibrium state can be followed in real time. As such, and at relatively low fluences, there is no interaction between the electrons and the photons; certainly that is the case in vacuum because energy-momentum conservation is not possible. In the presence of nanostructures and at higher fluences, energy-momentum conservation is possible and the electron packet can either gain or lose light quanta. Recently, it was reported that, when only electrons with gained energy are filtered, near-field imaging enables the visualization of nanoscale particles and interfaces with enhanced contrast (Barwick et al 2009 Nature 462 902). To explore a variety of applications, it is important to express, through analytical formulation, the key parameters involved in this photon-induced near-field electron microscopy (PINEM) and to predict the associated phenomena of, e.g., forty-photon absorption by the electron packet. In this paper, we give an account of the theoretical and experimental results of PINEM. In particular, the time-dependent quantum solution for ultrafast electron packets in the nanostructure scattered electromagnetic (near) field is solved in the high kinetic energy limit to obtain the evolution of the incident electron packet into a superposition of discrete momentum wavelets. The characteristic length and time scales of the halo of electron-photon coupling are discussed in the framework of Rayleigh and Mie scatterings, providing the dependence of the PINEM effect on size, polarization, material and spatiotemporal localization. We also provide a simple classical description that is based on features of plasmonics. A major part of this paper is devoted to the comparisons between the theoretical results and the recently obtained experimental findings about the imaging of materials and biological systems.",
author = "Park, {Sang Tae} and Milo Lin and Zewail, {Ahmed H.}",
year = "2010",
month = "12",
day = "1",
doi = "10.1088/1367-2630/12/12/123028",
language = "English (US)",
volume = "12",
journal = "New Journal of Physics",
issn = "1367-2630",
publisher = "IOP Publishing Ltd.",

}

TY - JOUR

T1 - Photon-induced near-field electron microscopy (PINEM)

T2 - Theoretical and experimental

AU - Park, Sang Tae

AU - Lin, Milo

AU - Zewail, Ahmed H.

PY - 2010/12/1

Y1 - 2010/12/1

N2 - Electron imaging in space and time is achieved in microscopy with timed (near relativistic) electron packets of picometer wavelength coincident with light pulses of femtosecond duration. The photons (with an energy of a few electronvolts) are used to impulsively heat or excite the specimen so that the evolution of structures from their nonequilibrium state can be followed in real time. As such, and at relatively low fluences, there is no interaction between the electrons and the photons; certainly that is the case in vacuum because energy-momentum conservation is not possible. In the presence of nanostructures and at higher fluences, energy-momentum conservation is possible and the electron packet can either gain or lose light quanta. Recently, it was reported that, when only electrons with gained energy are filtered, near-field imaging enables the visualization of nanoscale particles and interfaces with enhanced contrast (Barwick et al 2009 Nature 462 902). To explore a variety of applications, it is important to express, through analytical formulation, the key parameters involved in this photon-induced near-field electron microscopy (PINEM) and to predict the associated phenomena of, e.g., forty-photon absorption by the electron packet. In this paper, we give an account of the theoretical and experimental results of PINEM. In particular, the time-dependent quantum solution for ultrafast electron packets in the nanostructure scattered electromagnetic (near) field is solved in the high kinetic energy limit to obtain the evolution of the incident electron packet into a superposition of discrete momentum wavelets. The characteristic length and time scales of the halo of electron-photon coupling are discussed in the framework of Rayleigh and Mie scatterings, providing the dependence of the PINEM effect on size, polarization, material and spatiotemporal localization. We also provide a simple classical description that is based on features of plasmonics. A major part of this paper is devoted to the comparisons between the theoretical results and the recently obtained experimental findings about the imaging of materials and biological systems.

AB - Electron imaging in space and time is achieved in microscopy with timed (near relativistic) electron packets of picometer wavelength coincident with light pulses of femtosecond duration. The photons (with an energy of a few electronvolts) are used to impulsively heat or excite the specimen so that the evolution of structures from their nonequilibrium state can be followed in real time. As such, and at relatively low fluences, there is no interaction between the electrons and the photons; certainly that is the case in vacuum because energy-momentum conservation is not possible. In the presence of nanostructures and at higher fluences, energy-momentum conservation is possible and the electron packet can either gain or lose light quanta. Recently, it was reported that, when only electrons with gained energy are filtered, near-field imaging enables the visualization of nanoscale particles and interfaces with enhanced contrast (Barwick et al 2009 Nature 462 902). To explore a variety of applications, it is important to express, through analytical formulation, the key parameters involved in this photon-induced near-field electron microscopy (PINEM) and to predict the associated phenomena of, e.g., forty-photon absorption by the electron packet. In this paper, we give an account of the theoretical and experimental results of PINEM. In particular, the time-dependent quantum solution for ultrafast electron packets in the nanostructure scattered electromagnetic (near) field is solved in the high kinetic energy limit to obtain the evolution of the incident electron packet into a superposition of discrete momentum wavelets. The characteristic length and time scales of the halo of electron-photon coupling are discussed in the framework of Rayleigh and Mie scatterings, providing the dependence of the PINEM effect on size, polarization, material and spatiotemporal localization. We also provide a simple classical description that is based on features of plasmonics. A major part of this paper is devoted to the comparisons between the theoretical results and the recently obtained experimental findings about the imaging of materials and biological systems.

UR - http://www.scopus.com/inward/record.url?scp=78651328576&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78651328576&partnerID=8YFLogxK

U2 - 10.1088/1367-2630/12/12/123028

DO - 10.1088/1367-2630/12/12/123028

M3 - Article

VL - 12

JO - New Journal of Physics

JF - New Journal of Physics

SN - 1367-2630

M1 - 123028

ER -