Potassium handling with dual renin-angiotensin system inhibition in diabetic nephropathy

Peter N. Van Buren, Beverley Adams-Huet, Mark Nguyen, Christopher Molina, Robert D. Toto

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Background and objectives: Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are the cornerstones of pharmacologic therapy in diabetic nephropathy. Mineralocorticoid receptor blockers reduce proteinuria as single agents or add-on therapy to other renin-angiotensin-aldosterone system-inhibiting drugs in these patients. The long-term benefits and ultimate role of mineralocorticoid receptor blockers in diabetic nephropathy remain unknown. A clinical trial previously showed that the kalemic effect of spironolactone is higher than losartan when added to lisinopril in patients with diabetic nephropathy. The purpose of this study was to investigate if renal potassium handling was primarily responsible for that observation. Design, setting, participants, & measurements: In a blinded, randomized, three-arm placebo-controlled clinical trial, 80 participants with diabetic nephropathy taking lisinopril (80 mg) were randomized to spironolactone (25 mg daily), losartan (100 mg daily), or placebo (trial dates from July of 2003 to December of 2006). Serum potassium, aldosterone, and 24-hour urine sodium, potassium, and creatinine were measured over 48 weeks. Differences were analyzed with repeated measures mixed models. Results: Mean follow-up serum potassium was 5.0 mEq/L for spironolactone, 4.7 mEq/L for losartan (P=0.05 versus spironolactone), and 4.5 mEq/L for placebo (P<0.001 versus spironolactone; P=0.03 versus losartan). The difference in serum potassium was 0.23 mEq/L for losartan versus placebo (P=0.02), 0.43 mEq/L for spironolactone versus placebo (P<0.001), and 0.2 mEq/L for spironolactone versus losartan (P=0.05). Serum and urine potassium excretion and secretion rates were similar between groups throughout the study. Conclusion: Spironolactone raised serum potassium more than losartan in patients with diabetic nephropathy receiving lisinopril, despite similar renal sodium and potassium excretion. This finding suggests that extrarenal potassium homeostasis contributes to hyperkalemia in these patients. A better understanding of extrarenal potassium homeostasis will provide an opportunity to use this drug more safely in patients with diabetic nephropathy as well as other patient populations.

Original languageEnglish (US)
Pages (from-to)295-301
Number of pages7
JournalClinical Journal of the American Society of Nephrology
Volume9
Issue number2
DOIs
StatePublished - 2014

Fingerprint

Spironolactone
Diabetic Nephropathies
Renin-Angiotensin System
Losartan
Potassium
Lisinopril
Placebos
Mineralocorticoid Receptors
Serum
Homeostasis
Sodium
Urine
Kidney
Hyperkalemia
Angiotensin Receptor Antagonists
Controlled Clinical Trials
Aldosterone
Proteinuria
Angiotensin-Converting Enzyme Inhibitors
Pharmaceutical Preparations

ASJC Scopus subject areas

  • Nephrology
  • Transplantation
  • Epidemiology
  • Critical Care and Intensive Care Medicine

Cite this

Potassium handling with dual renin-angiotensin system inhibition in diabetic nephropathy. / Van Buren, Peter N.; Adams-Huet, Beverley; Nguyen, Mark; Molina, Christopher; Toto, Robert D.

In: Clinical Journal of the American Society of Nephrology, Vol. 9, No. 2, 2014, p. 295-301.

Research output: Contribution to journalArticle

@article{94c78736fc324d1eb08ac658457e871f,
title = "Potassium handling with dual renin-angiotensin system inhibition in diabetic nephropathy",
abstract = "Background and objectives: Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are the cornerstones of pharmacologic therapy in diabetic nephropathy. Mineralocorticoid receptor blockers reduce proteinuria as single agents or add-on therapy to other renin-angiotensin-aldosterone system-inhibiting drugs in these patients. The long-term benefits and ultimate role of mineralocorticoid receptor blockers in diabetic nephropathy remain unknown. A clinical trial previously showed that the kalemic effect of spironolactone is higher than losartan when added to lisinopril in patients with diabetic nephropathy. The purpose of this study was to investigate if renal potassium handling was primarily responsible for that observation. Design, setting, participants, & measurements: In a blinded, randomized, three-arm placebo-controlled clinical trial, 80 participants with diabetic nephropathy taking lisinopril (80 mg) were randomized to spironolactone (25 mg daily), losartan (100 mg daily), or placebo (trial dates from July of 2003 to December of 2006). Serum potassium, aldosterone, and 24-hour urine sodium, potassium, and creatinine were measured over 48 weeks. Differences were analyzed with repeated measures mixed models. Results: Mean follow-up serum potassium was 5.0 mEq/L for spironolactone, 4.7 mEq/L for losartan (P=0.05 versus spironolactone), and 4.5 mEq/L for placebo (P<0.001 versus spironolactone; P=0.03 versus losartan). The difference in serum potassium was 0.23 mEq/L for losartan versus placebo (P=0.02), 0.43 mEq/L for spironolactone versus placebo (P<0.001), and 0.2 mEq/L for spironolactone versus losartan (P=0.05). Serum and urine potassium excretion and secretion rates were similar between groups throughout the study. Conclusion: Spironolactone raised serum potassium more than losartan in patients with diabetic nephropathy receiving lisinopril, despite similar renal sodium and potassium excretion. This finding suggests that extrarenal potassium homeostasis contributes to hyperkalemia in these patients. A better understanding of extrarenal potassium homeostasis will provide an opportunity to use this drug more safely in patients with diabetic nephropathy as well as other patient populations.",
author = "{Van Buren}, {Peter N.} and Beverley Adams-Huet and Mark Nguyen and Christopher Molina and Toto, {Robert D.}",
year = "2014",
doi = "10.2215/CJN.07460713",
language = "English (US)",
volume = "9",
pages = "295--301",
journal = "Clinical Journal of the American Society of Nephrology",
issn = "1555-9041",
publisher = "American Society of Nephrology",
number = "2",

}

TY - JOUR

T1 - Potassium handling with dual renin-angiotensin system inhibition in diabetic nephropathy

AU - Van Buren, Peter N.

AU - Adams-Huet, Beverley

AU - Nguyen, Mark

AU - Molina, Christopher

AU - Toto, Robert D.

PY - 2014

Y1 - 2014

N2 - Background and objectives: Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are the cornerstones of pharmacologic therapy in diabetic nephropathy. Mineralocorticoid receptor blockers reduce proteinuria as single agents or add-on therapy to other renin-angiotensin-aldosterone system-inhibiting drugs in these patients. The long-term benefits and ultimate role of mineralocorticoid receptor blockers in diabetic nephropathy remain unknown. A clinical trial previously showed that the kalemic effect of spironolactone is higher than losartan when added to lisinopril in patients with diabetic nephropathy. The purpose of this study was to investigate if renal potassium handling was primarily responsible for that observation. Design, setting, participants, & measurements: In a blinded, randomized, three-arm placebo-controlled clinical trial, 80 participants with diabetic nephropathy taking lisinopril (80 mg) were randomized to spironolactone (25 mg daily), losartan (100 mg daily), or placebo (trial dates from July of 2003 to December of 2006). Serum potassium, aldosterone, and 24-hour urine sodium, potassium, and creatinine were measured over 48 weeks. Differences were analyzed with repeated measures mixed models. Results: Mean follow-up serum potassium was 5.0 mEq/L for spironolactone, 4.7 mEq/L for losartan (P=0.05 versus spironolactone), and 4.5 mEq/L for placebo (P<0.001 versus spironolactone; P=0.03 versus losartan). The difference in serum potassium was 0.23 mEq/L for losartan versus placebo (P=0.02), 0.43 mEq/L for spironolactone versus placebo (P<0.001), and 0.2 mEq/L for spironolactone versus losartan (P=0.05). Serum and urine potassium excretion and secretion rates were similar between groups throughout the study. Conclusion: Spironolactone raised serum potassium more than losartan in patients with diabetic nephropathy receiving lisinopril, despite similar renal sodium and potassium excretion. This finding suggests that extrarenal potassium homeostasis contributes to hyperkalemia in these patients. A better understanding of extrarenal potassium homeostasis will provide an opportunity to use this drug more safely in patients with diabetic nephropathy as well as other patient populations.

AB - Background and objectives: Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are the cornerstones of pharmacologic therapy in diabetic nephropathy. Mineralocorticoid receptor blockers reduce proteinuria as single agents or add-on therapy to other renin-angiotensin-aldosterone system-inhibiting drugs in these patients. The long-term benefits and ultimate role of mineralocorticoid receptor blockers in diabetic nephropathy remain unknown. A clinical trial previously showed that the kalemic effect of spironolactone is higher than losartan when added to lisinopril in patients with diabetic nephropathy. The purpose of this study was to investigate if renal potassium handling was primarily responsible for that observation. Design, setting, participants, & measurements: In a blinded, randomized, three-arm placebo-controlled clinical trial, 80 participants with diabetic nephropathy taking lisinopril (80 mg) were randomized to spironolactone (25 mg daily), losartan (100 mg daily), or placebo (trial dates from July of 2003 to December of 2006). Serum potassium, aldosterone, and 24-hour urine sodium, potassium, and creatinine were measured over 48 weeks. Differences were analyzed with repeated measures mixed models. Results: Mean follow-up serum potassium was 5.0 mEq/L for spironolactone, 4.7 mEq/L for losartan (P=0.05 versus spironolactone), and 4.5 mEq/L for placebo (P<0.001 versus spironolactone; P=0.03 versus losartan). The difference in serum potassium was 0.23 mEq/L for losartan versus placebo (P=0.02), 0.43 mEq/L for spironolactone versus placebo (P<0.001), and 0.2 mEq/L for spironolactone versus losartan (P=0.05). Serum and urine potassium excretion and secretion rates were similar between groups throughout the study. Conclusion: Spironolactone raised serum potassium more than losartan in patients with diabetic nephropathy receiving lisinopril, despite similar renal sodium and potassium excretion. This finding suggests that extrarenal potassium homeostasis contributes to hyperkalemia in these patients. A better understanding of extrarenal potassium homeostasis will provide an opportunity to use this drug more safely in patients with diabetic nephropathy as well as other patient populations.

UR - http://www.scopus.com/inward/record.url?scp=84893596631&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84893596631&partnerID=8YFLogxK

U2 - 10.2215/CJN.07460713

DO - 10.2215/CJN.07460713

M3 - Article

VL - 9

SP - 295

EP - 301

JO - Clinical Journal of the American Society of Nephrology

JF - Clinical Journal of the American Society of Nephrology

SN - 1555-9041

IS - 2

ER -