Potential for monitoring gut microbiota for diagnosing infections and graft-versus-host disease in cancer and stem cell transplant patients

Research output: Contribution to journalReview article

2 Citations (Scopus)

Abstract

BACKGROUND: Gut microbiota, the collective community of microorganisms inhabiting the intestine, have been shown to provide many beneficial functions for the host. Recent advances in next-generation sequencing and advanced molecular biology approaches have allowed researchers to identify gut microbiota signatures associated with disease processes and, in some cases, establish causality and elucidate underlying mechanisms. CONTENT: This report reviews 3 commonly used methods for studying the gut microbiota and microbiome (the collective genomes of the gut microorganisms): 16S rRNA gene sequencing, bacterial group or speciesspecific quantitative polymerase chain reaction (qPCR), and metagenomic shotgun sequencing (MSS). The technical approaches and resources needed for each approach are outlined, and advantages and disadvantages for each approach are summarized. The findings regarding the role of the gut microbiota in the health of patients with cancer and stem cell transplant (SCT) patients (specifically in modulating the development of gut-derived bacterial infections and a posttransplant immune-mediated complication known as graft-vs-host-disease) are reviewed. Finally, there is discussion of the potential viability of these approaches in the actual clinical treatment of cancer and SCT patients. SUMMARY: Advances in next-generation sequencing have revolutionized our understanding of the importance of the gut microbiome to human health. Both 16S rRNA gene sequencing and MSS are currently too laborintensive or computationally burdensome to incorporate into real-time clinical monitoring of gut microbiomes. Yet, the lessons learned from these technologies could be adapted to currently used methods (e.g., qPCR) that could then be rigorously tested in the clinical care of these patients.

Original languageEnglish (US)
Pages (from-to)1685-1694
Number of pages10
JournalClinical Chemistry
Volume63
Issue number11
DOIs
StatePublished - Nov 1 2017

Fingerprint

Transplants
Neoplastic Stem Cells
Graft vs Host Disease
Stem cells
Grafts
Genes
Polymerase chain reaction
Microorganisms
Monitoring
Infection
Health
Molecular biology
Metagenomics
Firearms
rRNA Genes
Polymerase Chain Reaction
Gastrointestinal Microbiome
Bacterial Infections
Causality
Intestines

ASJC Scopus subject areas

  • Clinical Biochemistry
  • Biochemistry, medical

Cite this

@article{b368989047db4e00b904149acaca756c,
title = "Potential for monitoring gut microbiota for diagnosing infections and graft-versus-host disease in cancer and stem cell transplant patients",
abstract = "BACKGROUND: Gut microbiota, the collective community of microorganisms inhabiting the intestine, have been shown to provide many beneficial functions for the host. Recent advances in next-generation sequencing and advanced molecular biology approaches have allowed researchers to identify gut microbiota signatures associated with disease processes and, in some cases, establish causality and elucidate underlying mechanisms. CONTENT: This report reviews 3 commonly used methods for studying the gut microbiota and microbiome (the collective genomes of the gut microorganisms): 16S rRNA gene sequencing, bacterial group or speciesspecific quantitative polymerase chain reaction (qPCR), and metagenomic shotgun sequencing (MSS). The technical approaches and resources needed for each approach are outlined, and advantages and disadvantages for each approach are summarized. The findings regarding the role of the gut microbiota in the health of patients with cancer and stem cell transplant (SCT) patients (specifically in modulating the development of gut-derived bacterial infections and a posttransplant immune-mediated complication known as graft-vs-host-disease) are reviewed. Finally, there is discussion of the potential viability of these approaches in the actual clinical treatment of cancer and SCT patients. SUMMARY: Advances in next-generation sequencing have revolutionized our understanding of the importance of the gut microbiome to human health. Both 16S rRNA gene sequencing and MSS are currently too laborintensive or computationally burdensome to incorporate into real-time clinical monitoring of gut microbiomes. Yet, the lessons learned from these technologies could be adapted to currently used methods (e.g., qPCR) that could then be rigorously tested in the clinical care of these patients.",
author = "Koh, {Andrew Y.}",
year = "2017",
month = "11",
day = "1",
doi = "10.1373/clinchem.2016.259499",
language = "English (US)",
volume = "63",
pages = "1685--1694",
journal = "Clinical Chemistry",
issn = "0009-9147",
publisher = "American Association for Clinical Chemistry Inc.",
number = "11",

}

TY - JOUR

T1 - Potential for monitoring gut microbiota for diagnosing infections and graft-versus-host disease in cancer and stem cell transplant patients

AU - Koh, Andrew Y.

PY - 2017/11/1

Y1 - 2017/11/1

N2 - BACKGROUND: Gut microbiota, the collective community of microorganisms inhabiting the intestine, have been shown to provide many beneficial functions for the host. Recent advances in next-generation sequencing and advanced molecular biology approaches have allowed researchers to identify gut microbiota signatures associated with disease processes and, in some cases, establish causality and elucidate underlying mechanisms. CONTENT: This report reviews 3 commonly used methods for studying the gut microbiota and microbiome (the collective genomes of the gut microorganisms): 16S rRNA gene sequencing, bacterial group or speciesspecific quantitative polymerase chain reaction (qPCR), and metagenomic shotgun sequencing (MSS). The technical approaches and resources needed for each approach are outlined, and advantages and disadvantages for each approach are summarized. The findings regarding the role of the gut microbiota in the health of patients with cancer and stem cell transplant (SCT) patients (specifically in modulating the development of gut-derived bacterial infections and a posttransplant immune-mediated complication known as graft-vs-host-disease) are reviewed. Finally, there is discussion of the potential viability of these approaches in the actual clinical treatment of cancer and SCT patients. SUMMARY: Advances in next-generation sequencing have revolutionized our understanding of the importance of the gut microbiome to human health. Both 16S rRNA gene sequencing and MSS are currently too laborintensive or computationally burdensome to incorporate into real-time clinical monitoring of gut microbiomes. Yet, the lessons learned from these technologies could be adapted to currently used methods (e.g., qPCR) that could then be rigorously tested in the clinical care of these patients.

AB - BACKGROUND: Gut microbiota, the collective community of microorganisms inhabiting the intestine, have been shown to provide many beneficial functions for the host. Recent advances in next-generation sequencing and advanced molecular biology approaches have allowed researchers to identify gut microbiota signatures associated with disease processes and, in some cases, establish causality and elucidate underlying mechanisms. CONTENT: This report reviews 3 commonly used methods for studying the gut microbiota and microbiome (the collective genomes of the gut microorganisms): 16S rRNA gene sequencing, bacterial group or speciesspecific quantitative polymerase chain reaction (qPCR), and metagenomic shotgun sequencing (MSS). The technical approaches and resources needed for each approach are outlined, and advantages and disadvantages for each approach are summarized. The findings regarding the role of the gut microbiota in the health of patients with cancer and stem cell transplant (SCT) patients (specifically in modulating the development of gut-derived bacterial infections and a posttransplant immune-mediated complication known as graft-vs-host-disease) are reviewed. Finally, there is discussion of the potential viability of these approaches in the actual clinical treatment of cancer and SCT patients. SUMMARY: Advances in next-generation sequencing have revolutionized our understanding of the importance of the gut microbiome to human health. Both 16S rRNA gene sequencing and MSS are currently too laborintensive or computationally burdensome to incorporate into real-time clinical monitoring of gut microbiomes. Yet, the lessons learned from these technologies could be adapted to currently used methods (e.g., qPCR) that could then be rigorously tested in the clinical care of these patients.

UR - http://www.scopus.com/inward/record.url?scp=85032965770&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85032965770&partnerID=8YFLogxK

U2 - 10.1373/clinchem.2016.259499

DO - 10.1373/clinchem.2016.259499

M3 - Review article

C2 - 28720679

AN - SCOPUS:85032965770

VL - 63

SP - 1685

EP - 1694

JO - Clinical Chemistry

JF - Clinical Chemistry

SN - 0009-9147

IS - 11

ER -