Abstract
The method developed for the calculation of the flux and composition of the West Area Neutrino Beam used by NOMAD in its search for neutrino oscillations is described. The calculation is based on particle production rates computed using a recent version of FLUKA and modified to take into account the cross-sections measured by the SPY and NA20 experiments. These particles are propagated through the beam line taking into account the material and magnetic fields they traverse. The neutrinos produced through their decays are tracked to the NOMAD detector. The fluxes of the four neutrino flavours at NOMAD are predicted with an uncertainty of about 8% for νμ and νe, 10% for ν̄μ, and 12% for ν̄ e. The energy-dependent uncertainty achieved on the ν e/νμ prediction needed for a ν μ→νe oscillation search ranges from 4% to 7%, whereas the overall normalization uncertainty on this ratio is 4.2%.
Original language | English (US) |
---|---|
Pages (from-to) | 800-828 |
Number of pages | 29 |
Journal | Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
Volume | 515 |
Issue number | 3 |
DOIs | |
State | Published - Dec 11 2003 |
Externally published | Yes |
Keywords
- Neutrino beam
- Neutrino fluxes
ASJC Scopus subject areas
- Nuclear and High Energy Physics
- Instrumentation
Fingerprint
Dive into the research topics of 'Prediction of neutrino fluxes in the NOMAD experiment'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Prediction of neutrino fluxes in the NOMAD experiment. / Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Collazuol, G.; Conforto, G.; Conta, C.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; de Santo, A.; Dignan, T.; di Lella, L.; do Couto e Silva, E.; Dumarchez, J.; Ellis, M.; Feldman, G. J.; Ferrari, A.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J. M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J. J.; Gosset, J.; Göbling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hong, T. M.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Lachaud, C.; Lakić, B.; Lanza, A.; la Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J. M.; Linssen, L.; Ljubiĉić, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J. P.; Meyer, J. P.; Mezzetto, M.; Mishra, S. R.; Moorhead, G. F.; Nedelec, P.; Nefedov, Yu; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sevior, M.; Shih, D.; Sillou, D.; Soler, F. J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipĉević, M.; Stolarczyk, Th; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Toropin, A.; Touchard, A. M.; Tovey, S. N.; Tran, M. T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J. M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Yabsley, B. D.; Zaccone, H.; Zuber, K.
In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 515, No. 3, 11.12.2003, p. 800-828.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Prediction of neutrino fluxes in the NOMAD experiment
AU - Astier, P.
AU - Autiero, D.
AU - Baldisseri, A.
AU - Baldo-Ceolin, M.
AU - Banner, M.
AU - Bassompierre, G.
AU - Benslama, K.
AU - Besson, N.
AU - Bird, I.
AU - Blumenfeld, B.
AU - Bobisut, F.
AU - Bouchez, J.
AU - Boyd, S.
AU - Bueno, A.
AU - Bunyatov, S.
AU - Camilleri, L.
AU - Cardini, A.
AU - Cattaneo, P. W.
AU - Cavasinni, V.
AU - Cervera-Villanueva, A.
AU - Collazuol, G.
AU - Conforto, G.
AU - Conta, C.
AU - Cousins, R.
AU - Daniels, D.
AU - Degaudenzi, H.
AU - Del Prete, T.
AU - de Santo, A.
AU - Dignan, T.
AU - di Lella, L.
AU - do Couto e Silva, E.
AU - Dumarchez, J.
AU - Ellis, M.
AU - Feldman, G. J.
AU - Ferrari, A.
AU - Ferrari, R.
AU - Ferrère, D.
AU - Flaminio, V.
AU - Fraternali, M.
AU - Gaillard, J. M.
AU - Gangler, E.
AU - Geiser, A.
AU - Geppert, D.
AU - Gibin, D.
AU - Gninenko, S.
AU - Godley, A.
AU - Gomez-Cadenas, J. J.
AU - Gosset, J.
AU - Göbling, C.
AU - Gouanere, M.
AU - Grant, A.
AU - Graziani, G.
AU - Guglielmi, A.
AU - Hagner, C.
AU - Hernando, J.
AU - Hong, T. M.
AU - Hubbard, D.
AU - Hurst, P.
AU - Hyett, N.
AU - Iacopini, E.
AU - Joseph, C.
AU - Juget, F.
AU - Kirsanov, M.
AU - Klimov, O.
AU - Kokkonen, J.
AU - Kovzelev, A.
AU - Krasnoperov, A.
AU - Lachaud, C.
AU - Lakić, B.
AU - Lanza, A.
AU - la Rotonda, L.
AU - Laveder, M.
AU - Letessier-Selvon, A.
AU - Levy, J. M.
AU - Linssen, L.
AU - Ljubiĉić, A.
AU - Long, J.
AU - Lupi, A.
AU - Marchionni, A.
AU - Martelli, F.
AU - Mechain, X.
AU - Mendiburu, J. P.
AU - Meyer, J. P.
AU - Mezzetto, M.
AU - Mishra, S. R.
AU - Moorhead, G. F.
AU - Nedelec, P.
AU - Nefedov, Yu
AU - Nguyen-Mau, C.
AU - Orestano, D.
AU - Pastore, F.
AU - Peak, L. S.
AU - Pennacchio, E.
AU - Pessard, H.
AU - Petti, R.
AU - Placci, A.
AU - Polesello, G.
AU - Pollmann, D.
AU - Polyarush, A.
AU - Popov, B.
AU - Poulsen, C.
AU - Rico, J.
AU - Riemann, P.
AU - Roda, C.
AU - Rubbia, A.
AU - Salvatore, F.
AU - Schahmaneche, K.
AU - Schmidt, B.
AU - Schmidt, T.
AU - Sevior, M.
AU - Shih, D.
AU - Sillou, D.
AU - Soler, F. J.P.
AU - Sozzi, G.
AU - Steele, D.
AU - Stiegler, U.
AU - Stipĉević, M.
AU - Stolarczyk, Th
AU - Tareb-Reyes, M.
AU - Taylor, G. N.
AU - Tereshchenko, V.
AU - Toropin, A.
AU - Touchard, A. M.
AU - Tovey, S. N.
AU - Tran, M. T.
AU - Tsesmelis, E.
AU - Ulrichs, J.
AU - Vacavant, L.
AU - Valdata-Nappi, M.
AU - Valuev, V.
AU - Vannucci, F.
AU - Varvell, K. E.
AU - Veltri, M.
AU - Vercesi, V.
AU - Vidal-Sitjes, G.
AU - Vieira, J. M.
AU - Vinogradova, T.
AU - Weber, F. V.
AU - Weisse, T.
AU - Wilson, F. F.
AU - Winton, L. J.
AU - Yabsley, B. D.
AU - Zaccone, H.
AU - Zuber, K.
N1 - Funding Information: The following funding agencies have contributed to this experiment: Australian Research Council (ARC) and Department of Industry, Science, and Resources (DISR), Australia; Institut National de Physique Nucléaire et Physique des Particules (IN2P3), Commissariat à l'Energie Atomique (CEA), Ministère de l'Education Nationale, de l'Enseignement Supérieur et de la Recherche, France; Bundesministerium für Bildung und Forschung (BMBF), Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Nuclear Research of the Russian Academy of Sciences, Russia; Fonds National Suisse de la Recherche Scientifique, Switzerland; Department of Energy, National Science Foundation, the Sloan and the Cottrell Foundations, USA.
PY - 2003/12/11
Y1 - 2003/12/11
N2 - The method developed for the calculation of the flux and composition of the West Area Neutrino Beam used by NOMAD in its search for neutrino oscillations is described. The calculation is based on particle production rates computed using a recent version of FLUKA and modified to take into account the cross-sections measured by the SPY and NA20 experiments. These particles are propagated through the beam line taking into account the material and magnetic fields they traverse. The neutrinos produced through their decays are tracked to the NOMAD detector. The fluxes of the four neutrino flavours at NOMAD are predicted with an uncertainty of about 8% for νμ and νe, 10% for ν̄μ, and 12% for ν̄ e. The energy-dependent uncertainty achieved on the ν e/νμ prediction needed for a ν μ→νe oscillation search ranges from 4% to 7%, whereas the overall normalization uncertainty on this ratio is 4.2%.
AB - The method developed for the calculation of the flux and composition of the West Area Neutrino Beam used by NOMAD in its search for neutrino oscillations is described. The calculation is based on particle production rates computed using a recent version of FLUKA and modified to take into account the cross-sections measured by the SPY and NA20 experiments. These particles are propagated through the beam line taking into account the material and magnetic fields they traverse. The neutrinos produced through their decays are tracked to the NOMAD detector. The fluxes of the four neutrino flavours at NOMAD are predicted with an uncertainty of about 8% for νμ and νe, 10% for ν̄μ, and 12% for ν̄ e. The energy-dependent uncertainty achieved on the ν e/νμ prediction needed for a ν μ→νe oscillation search ranges from 4% to 7%, whereas the overall normalization uncertainty on this ratio is 4.2%.
KW - Neutrino beam
KW - Neutrino fluxes
UR - http://www.scopus.com/inward/record.url?scp=0242522303&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0242522303&partnerID=8YFLogxK
U2 - 10.1016/j.nima.2003.07.054
DO - 10.1016/j.nima.2003.07.054
M3 - Article
AN - SCOPUS:0242522303
VL - 515
SP - 800
EP - 828
JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
SN - 0168-9002
IS - 3
ER -