Prevention of fetal demise and growth restriction in a mouse model of fetal alcohol syndrome

Catherine Y. Spong, Daniel T. Abebe, Illana Gozes, Douglas E. Brenneman, Joanna M. Hill

Research output: Contribution to journalArticle

155 Citations (Scopus)

Abstract

Two peptides [NAPVSIPQ (NAP) and SALLRSIPA (ADNF-9)], that are associated with novel glial proteins regulated by vasoactive intestinal peptide, are shown now to provide protective intervention in a model of fetal alcohol syndrome. Fetal demise and growth restrictions were produced after intraperitoneal injection of ethanol to pregnant mice during midgestation (E8). Death and growth abnormalities elicited by alcohol treatment during development are believed to be associated, in part, with severe oxidative damage. NAP and ADNF-9 have been shown to exhibit antioxidative and antiapoptotic actions in vitro. Pretreatment with an equimolar combination of the peptides prevented the alcohol-induced fetal death and growth abnormalities. Pretreatment with NAP alone resulted in a significant decrease in alcohol-associated fetal death; whereas ADNF-9 alone had no detectable effect on fetal survival after alcohol exposure, indicating a pharmacological distinction between the peptides. Biochemical assessment of the fetuses indicated that the combination peptide treatment prevented the alcohol-induced decreases in reduced glutathione. Peptide efficacy was evident with either 30-min pretreatment or with 1-h post-alcohol administration. Bioavailability studies with [3H]NAPVSIPQ indicated that 39% of the total radioactivity comigrated with intact peptide in the fetus 60 min after administration. These studies demonstrate that fetal death and growth restriction associated with prenatal alcohol exposure were prevented by combinatorial peptide treatment and suggest that this therapeutic strategy be explored in other models/diseases associated with oxidative stress.

Original languageEnglish (US)
Pages (from-to)774-779
Number of pages6
JournalJournal of Pharmacology and Experimental Therapeutics
Volume297
Issue number2
StatePublished - May 8 2001
Externally publishedYes

Fingerprint

Fetal Alcohol Spectrum Disorders
Fetal Death
Fetal Development
Alcohols
Peptides
Fetus
Vasoactive Intestinal Peptide
Therapeutics
Intraperitoneal Injections
Neuroglia
Radioactivity
Biological Availability
Glutathione
Oxidative Stress
Ethanol
Pharmacology
Growth

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmacology

Cite this

Prevention of fetal demise and growth restriction in a mouse model of fetal alcohol syndrome. / Spong, Catherine Y.; Abebe, Daniel T.; Gozes, Illana; Brenneman, Douglas E.; Hill, Joanna M.

In: Journal of Pharmacology and Experimental Therapeutics, Vol. 297, No. 2, 08.05.2001, p. 774-779.

Research output: Contribution to journalArticle

Spong, Catherine Y. ; Abebe, Daniel T. ; Gozes, Illana ; Brenneman, Douglas E. ; Hill, Joanna M. / Prevention of fetal demise and growth restriction in a mouse model of fetal alcohol syndrome. In: Journal of Pharmacology and Experimental Therapeutics. 2001 ; Vol. 297, No. 2. pp. 774-779.
@article{4bec4356fd534f8f93cf32454a59e5c3,
title = "Prevention of fetal demise and growth restriction in a mouse model of fetal alcohol syndrome",
abstract = "Two peptides [NAPVSIPQ (NAP) and SALLRSIPA (ADNF-9)], that are associated with novel glial proteins regulated by vasoactive intestinal peptide, are shown now to provide protective intervention in a model of fetal alcohol syndrome. Fetal demise and growth restrictions were produced after intraperitoneal injection of ethanol to pregnant mice during midgestation (E8). Death and growth abnormalities elicited by alcohol treatment during development are believed to be associated, in part, with severe oxidative damage. NAP and ADNF-9 have been shown to exhibit antioxidative and antiapoptotic actions in vitro. Pretreatment with an equimolar combination of the peptides prevented the alcohol-induced fetal death and growth abnormalities. Pretreatment with NAP alone resulted in a significant decrease in alcohol-associated fetal death; whereas ADNF-9 alone had no detectable effect on fetal survival after alcohol exposure, indicating a pharmacological distinction between the peptides. Biochemical assessment of the fetuses indicated that the combination peptide treatment prevented the alcohol-induced decreases in reduced glutathione. Peptide efficacy was evident with either 30-min pretreatment or with 1-h post-alcohol administration. Bioavailability studies with [3H]NAPVSIPQ indicated that 39{\%} of the total radioactivity comigrated with intact peptide in the fetus 60 min after administration. These studies demonstrate that fetal death and growth restriction associated with prenatal alcohol exposure were prevented by combinatorial peptide treatment and suggest that this therapeutic strategy be explored in other models/diseases associated with oxidative stress.",
author = "Spong, {Catherine Y.} and Abebe, {Daniel T.} and Illana Gozes and Brenneman, {Douglas E.} and Hill, {Joanna M.}",
year = "2001",
month = "5",
day = "8",
language = "English (US)",
volume = "297",
pages = "774--779",
journal = "Journal of Pharmacology and Experimental Therapeutics",
issn = "0022-3565",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "2",

}

TY - JOUR

T1 - Prevention of fetal demise and growth restriction in a mouse model of fetal alcohol syndrome

AU - Spong, Catherine Y.

AU - Abebe, Daniel T.

AU - Gozes, Illana

AU - Brenneman, Douglas E.

AU - Hill, Joanna M.

PY - 2001/5/8

Y1 - 2001/5/8

N2 - Two peptides [NAPVSIPQ (NAP) and SALLRSIPA (ADNF-9)], that are associated with novel glial proteins regulated by vasoactive intestinal peptide, are shown now to provide protective intervention in a model of fetal alcohol syndrome. Fetal demise and growth restrictions were produced after intraperitoneal injection of ethanol to pregnant mice during midgestation (E8). Death and growth abnormalities elicited by alcohol treatment during development are believed to be associated, in part, with severe oxidative damage. NAP and ADNF-9 have been shown to exhibit antioxidative and antiapoptotic actions in vitro. Pretreatment with an equimolar combination of the peptides prevented the alcohol-induced fetal death and growth abnormalities. Pretreatment with NAP alone resulted in a significant decrease in alcohol-associated fetal death; whereas ADNF-9 alone had no detectable effect on fetal survival after alcohol exposure, indicating a pharmacological distinction between the peptides. Biochemical assessment of the fetuses indicated that the combination peptide treatment prevented the alcohol-induced decreases in reduced glutathione. Peptide efficacy was evident with either 30-min pretreatment or with 1-h post-alcohol administration. Bioavailability studies with [3H]NAPVSIPQ indicated that 39% of the total radioactivity comigrated with intact peptide in the fetus 60 min after administration. These studies demonstrate that fetal death and growth restriction associated with prenatal alcohol exposure were prevented by combinatorial peptide treatment and suggest that this therapeutic strategy be explored in other models/diseases associated with oxidative stress.

AB - Two peptides [NAPVSIPQ (NAP) and SALLRSIPA (ADNF-9)], that are associated with novel glial proteins regulated by vasoactive intestinal peptide, are shown now to provide protective intervention in a model of fetal alcohol syndrome. Fetal demise and growth restrictions were produced after intraperitoneal injection of ethanol to pregnant mice during midgestation (E8). Death and growth abnormalities elicited by alcohol treatment during development are believed to be associated, in part, with severe oxidative damage. NAP and ADNF-9 have been shown to exhibit antioxidative and antiapoptotic actions in vitro. Pretreatment with an equimolar combination of the peptides prevented the alcohol-induced fetal death and growth abnormalities. Pretreatment with NAP alone resulted in a significant decrease in alcohol-associated fetal death; whereas ADNF-9 alone had no detectable effect on fetal survival after alcohol exposure, indicating a pharmacological distinction between the peptides. Biochemical assessment of the fetuses indicated that the combination peptide treatment prevented the alcohol-induced decreases in reduced glutathione. Peptide efficacy was evident with either 30-min pretreatment or with 1-h post-alcohol administration. Bioavailability studies with [3H]NAPVSIPQ indicated that 39% of the total radioactivity comigrated with intact peptide in the fetus 60 min after administration. These studies demonstrate that fetal death and growth restriction associated with prenatal alcohol exposure were prevented by combinatorial peptide treatment and suggest that this therapeutic strategy be explored in other models/diseases associated with oxidative stress.

UR - http://www.scopus.com/inward/record.url?scp=0035040786&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035040786&partnerID=8YFLogxK

M3 - Article

C2 - 11303069

AN - SCOPUS:0035040786

VL - 297

SP - 774

EP - 779

JO - Journal of Pharmacology and Experimental Therapeutics

JF - Journal of Pharmacology and Experimental Therapeutics

SN - 0022-3565

IS - 2

ER -