Quantifying Intracranial Aneurysm Wall Permeability for Risk Assessment Using Dynamic Contrast-Enhanced MRI: A Pilot Study

P. Vakil, S. A. Ansari, C. G. Cantrell, C. S. Eddleman, F. H. Dehkordi, J. Vranic, M. C. Hurley, H. H. Batjer, B. R. Bendok, T. J. Carroll

Research output: Contribution to journalArticle

22 Scopus citations

Abstract

BACKGROUND AND PURPOSE: Pathological changes in the intracranial aneurysm wall may lead to increases in its permeability; however the clinical significance of such changes has not been explored. The purpose of this pilot study was to quantify intracranial aneurysm wall permeability (K(trans), VL) to contrast agent as a measure of aneurysm rupture risk and compare these parameters against other established measures of rupture risk. We hypothesized K(trans) would be associated with intracranial aneurysm rupture risk as defined by various anatomic, imaging, and clinical risk factors.

MATERIALS AND METHODS: Twenty-seven unruptured intracranial aneurysms in 23 patients were imaged with dynamic contrast-enhanced MR imaging, and wall permeability parameters (K(trans), VL) were measured in regions adjacent to the aneurysm wall and along the paired control MCA by 2 blinded observers. K(trans) and VL were evaluated as markers of rupture risk by comparing them against established clinical (symptomatic lesions) and anatomic (size, location, morphology, multiplicity) risk metrics.

RESULTS: Interobserver agreement was strong as shown in regression analysis (R(2) > 0.84) and intraclass correlation (intraclass correlation coefficient >0.92), indicating that the K(trans) can be reliably assessed clinically. All intracranial aneurysms had a pronounced increase in wall permeability compared with the paired healthy MCA (P < .001). Regression analysis demonstrated a significant trend toward an increased K(trans) with increasing aneurysm size (P < .001). Logistic regression showed that K(trans) also predicted risk in anatomic (P = .02) and combined anatomic/clinical (P = .03) groups independent of size.

CONCLUSIONS: We report the first evidence of dynamic contrast-enhanced MR imaging-modeled contrast permeability in intracranial aneurysms. We found that contrast agent permeability across the aneurysm wall correlated significantly with both aneurysm size and size-independent anatomic risk factors. In addition, K(trans) was a significant and size-independent predictor of morphologically and clinically defined high-risk aneurysms.

Original languageEnglish (US)
Pages (from-to)953-959
Number of pages7
JournalAJNR. American journal of neuroradiology
Volume36
Issue number5
DOIs
StatePublished - May 1 2015

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Clinical Neurology

Fingerprint Dive into the research topics of 'Quantifying Intracranial Aneurysm Wall Permeability for Risk Assessment Using Dynamic Contrast-Enhanced MRI: A Pilot Study'. Together they form a unique fingerprint.

  • Cite this

    Vakil, P., Ansari, S. A., Cantrell, C. G., Eddleman, C. S., Dehkordi, F. H., Vranic, J., Hurley, M. C., Batjer, H. H., Bendok, B. R., & Carroll, T. J. (2015). Quantifying Intracranial Aneurysm Wall Permeability for Risk Assessment Using Dynamic Contrast-Enhanced MRI: A Pilot Study. AJNR. American journal of neuroradiology, 36(5), 953-959. https://doi.org/10.3174/ajnr.A4225