Radiolabeling of poly(lactic-co-glycolic acid) (PLGA) nanoparticles with biotinylated F-18 prosthetic groups and imaging of their delivery to the brain with positron emission tomography

Rachael W. Sirianni, Ming Qiang Zheng, Toral R. Patel, Thomas Shafbauer, Jiangbing Zhou, W. Mark Saltzman, Richard E. Carson, Yiyun Huang

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

(Figure Presented) The avidin-biotin interaction permits rapid and nearly irreversible noncovalent linkage between biotinylated molecules and avidin-modified substrates. We designed a biotinylated radioligand intended for use in the detection of avidinmodified polymer nanoparticles in tissue with positron emission tomography (PET). Using an F-18 labeled prosthetic group, [18F]4-fluorobenzylamine, and a commercially available biotin derivate, NHS-PEG4-biotin, [18F]-fluorobenzylamide-poly- (ethylene glycol)4-biotin ([18F]NPB4) was prepared with high purity and specific activity. The attachment of the [18F]NPB4 radioligand to avidin-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticles was tested by using PET imaging to measure the kinetics of convection-enhanced delivery (CED) of nanoparticles of varying size to the rat brain. PET imaging enabled the direct observation of nanoparticle delivery by measurement of the spatial volume of distribution of radiolabeled nanoparticles as a function of time, both during and after the infusion. This work thus validates new methods for radiolabeling PEG-biotin derivatives and also provides insight into the fate of nanoparticles that have been infused directly into the brain.

Original languageEnglish (US)
Pages (from-to)2157-2165
Number of pages9
JournalBioconjugate Chemistry
Volume25
Issue number12
DOIs
StatePublished - Dec 17 2014

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Biomedical Engineering
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Radiolabeling of poly(lactic-co-glycolic acid) (PLGA) nanoparticles with biotinylated F-18 prosthetic groups and imaging of their delivery to the brain with positron emission tomography'. Together they form a unique fingerprint.

Cite this