Radiotherapy Planning Using an Improved Search Strategy in Particle Swarm Optimization

Arezoo Modiri, Xuejun Gu, Aaron M. Hagan, Amit Sawant

Research output: Contribution to journalArticle

11 Scopus citations

Abstract

Objective: Evolutionary stochastic global optimization algorithms are widely used in large-scale, nonconvex problems. However, enhancing the search efficiency and repeatability of these techniques often requires well-customized approaches. This study investigates one such approach. Methods: We use particle swarm optimization (PSO) algorithm to solve a 4D radiation therapy (RT) inverse planning problem, where the key idea is to use respiratory motion as an additional degree of freedom in lung cancer RT. The primary goal is to administer a lethal dose to the tumor target while sparing surrounding healthy tissue. Our optimization iteratively adjusts radiation fluence-weights for all beam apertures across all respiratory phases. We implement three PSO-based approaches: conventionally used unconstrained, hard-constrained, and our proposed virtual search. As proof of concept, five lung cancer patient cases are optimized over ten runs using each PSO approach. For comparison, a dynamically penalized likelihood (DPL) algorithm - a popular RT optimization technique is also implemented and used. Results: The proposed technique significantly improves the robustness to random initialization while requiring fewer iteration cycles to converge across all cases. DPL manages to find the global optimum in 2 out of 5 RT cases over significantly more iterations. Conclusion: The proposed virtual search approach boosts the swarm search efficiency, and consequently, improves the optimization convergence rate and robustness for PSO. Significance: RT planning is a large-scale, nonconvex optimization problem, where finding optimal solutions in a clinically practical time is critical. Our proposed approach can potentially improve the optimization efficiency in similar time-sensitive problems.

Original languageEnglish (US)
Article number7500064
Pages (from-to)980-989
Number of pages10
JournalIEEE Transactions on Biomedical Engineering
Volume64
Issue number5
DOIs
StatePublished - May 2017

Keywords

  • Nonconvex
  • optimization
  • particle swarm optimization (PSO)
  • radiotherapy

ASJC Scopus subject areas

  • Biomedical Engineering

Fingerprint Dive into the research topics of 'Radiotherapy Planning Using an Improved Search Strategy in Particle Swarm Optimization'. Together they form a unique fingerprint.

  • Cite this