RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks

Huiming Lu, Raghavendra A. Shamanna, Guido Keijzers, Roopesh Anand, Lene Juel Rasmussen, Petr Cejka, Deborah L. Croteau, Vilhelm A. Bohr

Research output: Contribution to journalArticlepeer-review

78 Scopus citations

Abstract

The RecQ helicase RECQL4, mutated in Rothmund-Thomson syndrome, regulates genome stability, aging, and cancer. Here, we identify a crucial role for RECQL4 in DNA end resection, which is the initial and an essential step of homologous recombination (HR)-dependent DNA double-strand break repair (DSBR). Depletion of RECQL4 severely reduces HR-mediated repair and 5' end resection in vivo. RECQL4 physically interacts with MRE11-RAD50-NBS1 (MRN), which senses DSBs and initiates DNA end resection with CtIP. The MRE11 exonuclease regulates the retention of RECQL4 at laser-induced DSBs. RECQL4 also directly interacts with CtIP via its N-terminal domain and promotes CtIP recruitment to the MRN complex at DSBs. Moreover, inactivation of RECQL4’s helicase activity impairs DNA end processing and HR-dependent DSBR without affecting its interaction with MRE11 and CtIP, suggesting an important role for RECQL4’s unwinding activity in the process. Thus, we report that RECQL4 is an important participant in HR-dependent DSBR.

Original languageEnglish (US)
Pages (from-to)161-173
Number of pages13
JournalCell Reports
Volume16
Issue number1
DOIs
StatePublished - Jun 28 2016
Externally publishedYes

Keywords

  • DNA repair
  • DNA resection
  • RECQL4
  • RecQ-like helicase
  • Rothmund-Thomson syndrome
  • homologous recombination

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks'. Together they form a unique fingerprint.

Cite this