Reduced 64Cu uptake and tumor growth inhibition by knockdown of human copper transporter 1 in xenograft mouse model of prostate cancer

Huawei Cai, Jiu Sheng Wu, Otto Muzik, Jer Tsong Hsieh, Robert J. Lee, Fangyu Peng

Research output: Contribution to journalArticle

34 Citations (Scopus)

Abstract

Copper is an element required for cell proliferation and angiogenesis. Human prostate cancer xenografts with increased 64Cu radioactivity were visualized previously by PET using 64CuCl2 as a radiotracer (64CuCl2 PET). This study aimed to determine whether the increased tumor 64Cu radioactivity was due to increased cellular uptake of 64Cu mediated by human copper transporter 1 (hCtr1) or simply due to nonspecific binding of ionic 64CuCl2 to tumor tissue. In addition, the functional role of hCtr1 in proliferation of prostate cancer cells and tumor growth was also assessed. Methods: A lentiviral vector encoding short-hairpin RNA specific for hCtr1 (Lenti-hCtr1- shRNA) was constructed for RNA interference-mediated knockdown of hCtr1 expression in prostate cancer cells. The degree of hCtr1 knockdown was determined by Western blot, and the effect of hCtr1 knockdown on copper uptake and proliferation were examined in vitro by cellular 64Cu uptake and cell proliferation assays. The effects of hCtr1 knockdown on tumor uptake of 64Cu were determined by PET quantification and tissue radioactivity assay. The effects of hCtr1 knockdown on tumor growth were assessed by PET/CT and tumor size measurement with a caliper. Results: RNA interference-mediated knockdown of hCtr1 was associated with the reduced cellular uptake of 64Cu and the suppression of prostate cancer cell proliferation in vitro. At 24 h after intravenous injection of the tracer 64CuCl2, the 64Cu uptake by the tumors with knockdown of hCtr1 (4.02 ± 0.31 percentage injected dose per gram [%ID/g] in Lenti-hCtr1-shRNA-PC-3 and 2.30 ± 0.59 %ID/g in Lenti-hCtr1-shRNA-DU- 145) was significantly lower than the 64Cu uptake by the control tumors without knockdown of hCtr1 (7.21 ± 1.48 %ID/g in Lenti-SCR-shRNA-PC-3 and 5.57 ± 1.20 % ID/g in Lenti-SCR-shRNA-DU-145, P , 0.001) by PET quantification. Moreover, the volumes of prostate cancer xenograft tumors with knockdown of hCtr1 (179 ± 111 mm3 for Lenti-hCtr1-shRNAPC- 3 or 39 ± 22 mm3 for Lenti-hCtr1-shRNA-DU-145) were significantly smaller than those without knockdown of hCtr1 (536 ± 191 mm3 for Lenti- SCR-shRNA-PC-3 or 208 ± 104 mm3 for Lenti-SCR-shRNA-DU- 145, P > 0.01). Conclusion: Overall, data indicated that hCtr1 is a promising theranostic target, which can be further developed for metabolic imaging of prostate cancer using 64CuCl2 PET/CT and personalized cancer therapy targeting copper metabolism.

Original languageEnglish (US)
Pages (from-to)622-628
Number of pages7
JournalJournal of Nuclear Medicine
Volume55
Issue number4
DOIs
StatePublished - Apr 1 2014

Fingerprint

Heterografts
Prostatic Neoplasms
Growth
Neoplasms
Small Interfering RNA
copper transporter 1
Radioactivity
Copper
Cell Proliferation
RNA Interference

Keywords

  • 64Cu-chloride
  • Copper metabolism
  • Human copper transporter 1
  • PET/CT
  • Prostate cancer

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Medicine(all)

Cite this

Reduced 64Cu uptake and tumor growth inhibition by knockdown of human copper transporter 1 in xenograft mouse model of prostate cancer. / Cai, Huawei; Wu, Jiu Sheng; Muzik, Otto; Hsieh, Jer Tsong; Lee, Robert J.; Peng, Fangyu.

In: Journal of Nuclear Medicine, Vol. 55, No. 4, 01.04.2014, p. 622-628.

Research output: Contribution to journalArticle

@article{7bb7321f20fe4539a070119a8037e064,
title = "Reduced 64Cu uptake and tumor growth inhibition by knockdown of human copper transporter 1 in xenograft mouse model of prostate cancer",
abstract = "Copper is an element required for cell proliferation and angiogenesis. Human prostate cancer xenografts with increased 64Cu radioactivity were visualized previously by PET using 64CuCl2 as a radiotracer (64CuCl2 PET). This study aimed to determine whether the increased tumor 64Cu radioactivity was due to increased cellular uptake of 64Cu mediated by human copper transporter 1 (hCtr1) or simply due to nonspecific binding of ionic 64CuCl2 to tumor tissue. In addition, the functional role of hCtr1 in proliferation of prostate cancer cells and tumor growth was also assessed. Methods: A lentiviral vector encoding short-hairpin RNA specific for hCtr1 (Lenti-hCtr1- shRNA) was constructed for RNA interference-mediated knockdown of hCtr1 expression in prostate cancer cells. The degree of hCtr1 knockdown was determined by Western blot, and the effect of hCtr1 knockdown on copper uptake and proliferation were examined in vitro by cellular 64Cu uptake and cell proliferation assays. The effects of hCtr1 knockdown on tumor uptake of 64Cu were determined by PET quantification and tissue radioactivity assay. The effects of hCtr1 knockdown on tumor growth were assessed by PET/CT and tumor size measurement with a caliper. Results: RNA interference-mediated knockdown of hCtr1 was associated with the reduced cellular uptake of 64Cu and the suppression of prostate cancer cell proliferation in vitro. At 24 h after intravenous injection of the tracer 64CuCl2, the 64Cu uptake by the tumors with knockdown of hCtr1 (4.02 ± 0.31 percentage injected dose per gram [{\%}ID/g] in Lenti-hCtr1-shRNA-PC-3 and 2.30 ± 0.59 {\%}ID/g in Lenti-hCtr1-shRNA-DU- 145) was significantly lower than the 64Cu uptake by the control tumors without knockdown of hCtr1 (7.21 ± 1.48 {\%}ID/g in Lenti-SCR-shRNA-PC-3 and 5.57 ± 1.20 {\%} ID/g in Lenti-SCR-shRNA-DU-145, P , 0.001) by PET quantification. Moreover, the volumes of prostate cancer xenograft tumors with knockdown of hCtr1 (179 ± 111 mm3 for Lenti-hCtr1-shRNAPC- 3 or 39 ± 22 mm3 for Lenti-hCtr1-shRNA-DU-145) were significantly smaller than those without knockdown of hCtr1 (536 ± 191 mm3 for Lenti- SCR-shRNA-PC-3 or 208 ± 104 mm3 for Lenti-SCR-shRNA-DU- 145, P > 0.01). Conclusion: Overall, data indicated that hCtr1 is a promising theranostic target, which can be further developed for metabolic imaging of prostate cancer using 64CuCl2 PET/CT and personalized cancer therapy targeting copper metabolism.",
keywords = "64Cu-chloride, Copper metabolism, Human copper transporter 1, PET/CT, Prostate cancer",
author = "Huawei Cai and Wu, {Jiu Sheng} and Otto Muzik and Hsieh, {Jer Tsong} and Lee, {Robert J.} and Fangyu Peng",
year = "2014",
month = "4",
day = "1",
doi = "10.2967/jnumed.113.126979",
language = "English (US)",
volume = "55",
pages = "622--628",
journal = "Journal of Nuclear Medicine",
issn = "0161-5505",
publisher = "Society of Nuclear Medicine Inc.",
number = "4",

}

TY - JOUR

T1 - Reduced 64Cu uptake and tumor growth inhibition by knockdown of human copper transporter 1 in xenograft mouse model of prostate cancer

AU - Cai, Huawei

AU - Wu, Jiu Sheng

AU - Muzik, Otto

AU - Hsieh, Jer Tsong

AU - Lee, Robert J.

AU - Peng, Fangyu

PY - 2014/4/1

Y1 - 2014/4/1

N2 - Copper is an element required for cell proliferation and angiogenesis. Human prostate cancer xenografts with increased 64Cu radioactivity were visualized previously by PET using 64CuCl2 as a radiotracer (64CuCl2 PET). This study aimed to determine whether the increased tumor 64Cu radioactivity was due to increased cellular uptake of 64Cu mediated by human copper transporter 1 (hCtr1) or simply due to nonspecific binding of ionic 64CuCl2 to tumor tissue. In addition, the functional role of hCtr1 in proliferation of prostate cancer cells and tumor growth was also assessed. Methods: A lentiviral vector encoding short-hairpin RNA specific for hCtr1 (Lenti-hCtr1- shRNA) was constructed for RNA interference-mediated knockdown of hCtr1 expression in prostate cancer cells. The degree of hCtr1 knockdown was determined by Western blot, and the effect of hCtr1 knockdown on copper uptake and proliferation were examined in vitro by cellular 64Cu uptake and cell proliferation assays. The effects of hCtr1 knockdown on tumor uptake of 64Cu were determined by PET quantification and tissue radioactivity assay. The effects of hCtr1 knockdown on tumor growth were assessed by PET/CT and tumor size measurement with a caliper. Results: RNA interference-mediated knockdown of hCtr1 was associated with the reduced cellular uptake of 64Cu and the suppression of prostate cancer cell proliferation in vitro. At 24 h after intravenous injection of the tracer 64CuCl2, the 64Cu uptake by the tumors with knockdown of hCtr1 (4.02 ± 0.31 percentage injected dose per gram [%ID/g] in Lenti-hCtr1-shRNA-PC-3 and 2.30 ± 0.59 %ID/g in Lenti-hCtr1-shRNA-DU- 145) was significantly lower than the 64Cu uptake by the control tumors without knockdown of hCtr1 (7.21 ± 1.48 %ID/g in Lenti-SCR-shRNA-PC-3 and 5.57 ± 1.20 % ID/g in Lenti-SCR-shRNA-DU-145, P , 0.001) by PET quantification. Moreover, the volumes of prostate cancer xenograft tumors with knockdown of hCtr1 (179 ± 111 mm3 for Lenti-hCtr1-shRNAPC- 3 or 39 ± 22 mm3 for Lenti-hCtr1-shRNA-DU-145) were significantly smaller than those without knockdown of hCtr1 (536 ± 191 mm3 for Lenti- SCR-shRNA-PC-3 or 208 ± 104 mm3 for Lenti-SCR-shRNA-DU- 145, P > 0.01). Conclusion: Overall, data indicated that hCtr1 is a promising theranostic target, which can be further developed for metabolic imaging of prostate cancer using 64CuCl2 PET/CT and personalized cancer therapy targeting copper metabolism.

AB - Copper is an element required for cell proliferation and angiogenesis. Human prostate cancer xenografts with increased 64Cu radioactivity were visualized previously by PET using 64CuCl2 as a radiotracer (64CuCl2 PET). This study aimed to determine whether the increased tumor 64Cu radioactivity was due to increased cellular uptake of 64Cu mediated by human copper transporter 1 (hCtr1) or simply due to nonspecific binding of ionic 64CuCl2 to tumor tissue. In addition, the functional role of hCtr1 in proliferation of prostate cancer cells and tumor growth was also assessed. Methods: A lentiviral vector encoding short-hairpin RNA specific for hCtr1 (Lenti-hCtr1- shRNA) was constructed for RNA interference-mediated knockdown of hCtr1 expression in prostate cancer cells. The degree of hCtr1 knockdown was determined by Western blot, and the effect of hCtr1 knockdown on copper uptake and proliferation were examined in vitro by cellular 64Cu uptake and cell proliferation assays. The effects of hCtr1 knockdown on tumor uptake of 64Cu were determined by PET quantification and tissue radioactivity assay. The effects of hCtr1 knockdown on tumor growth were assessed by PET/CT and tumor size measurement with a caliper. Results: RNA interference-mediated knockdown of hCtr1 was associated with the reduced cellular uptake of 64Cu and the suppression of prostate cancer cell proliferation in vitro. At 24 h after intravenous injection of the tracer 64CuCl2, the 64Cu uptake by the tumors with knockdown of hCtr1 (4.02 ± 0.31 percentage injected dose per gram [%ID/g] in Lenti-hCtr1-shRNA-PC-3 and 2.30 ± 0.59 %ID/g in Lenti-hCtr1-shRNA-DU- 145) was significantly lower than the 64Cu uptake by the control tumors without knockdown of hCtr1 (7.21 ± 1.48 %ID/g in Lenti-SCR-shRNA-PC-3 and 5.57 ± 1.20 % ID/g in Lenti-SCR-shRNA-DU-145, P , 0.001) by PET quantification. Moreover, the volumes of prostate cancer xenograft tumors with knockdown of hCtr1 (179 ± 111 mm3 for Lenti-hCtr1-shRNAPC- 3 or 39 ± 22 mm3 for Lenti-hCtr1-shRNA-DU-145) were significantly smaller than those without knockdown of hCtr1 (536 ± 191 mm3 for Lenti- SCR-shRNA-PC-3 or 208 ± 104 mm3 for Lenti-SCR-shRNA-DU- 145, P > 0.01). Conclusion: Overall, data indicated that hCtr1 is a promising theranostic target, which can be further developed for metabolic imaging of prostate cancer using 64CuCl2 PET/CT and personalized cancer therapy targeting copper metabolism.

KW - 64Cu-chloride

KW - Copper metabolism

KW - Human copper transporter 1

KW - PET/CT

KW - Prostate cancer

UR - http://www.scopus.com/inward/record.url?scp=84901372833&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84901372833&partnerID=8YFLogxK

U2 - 10.2967/jnumed.113.126979

DO - 10.2967/jnumed.113.126979

M3 - Article

C2 - 24639459

AN - SCOPUS:84901372833

VL - 55

SP - 622

EP - 628

JO - Journal of Nuclear Medicine

JF - Journal of Nuclear Medicine

SN - 0161-5505

IS - 4

ER -