Reduction of ring artifacts in CBCT: Detection and correction of pixel gain variations in flat panel detectors

Cem Altunbas, Chao Jen Lai, Yuncheng Zhong, Chris C. Shaw

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

Purpose: In using flat panel detectors (FPD) for cone beam computed tomography (CBCT), pixel gain variations may lead to structured nonuniformities in projections and ring artifacts in CBCT images. Such gain variations can be caused by change in detector entrance exposure levels or beam hardening, and they are not accounted by conventional flat field correction methods. In this work, the authors presented a method to identify isolated pixel clusters that exhibit gain variations and proposed a pixel gain correction (PGC) method to suppress both beam hardening and exposure level dependent gain variations. Methods: To modulate both beam spectrum and entrance exposure, flood field FPD projections were acquired using beam filters with varying thicknesses. " Ideal" pixel values were estimated by performing polynomial fits in both raw and flat field corrected projections. Residuals were calculated by taking the difference between measured and ideal pixel values to identify clustered image and FPD artifacts in flat field corrected and raw images, respectively. To correct clustered image artifacts, the ratio of ideal to measured pixel values in filtered images were utilized as pixel-specific gain correction factors, referred as PGC method, and they were tabulated as a function of pixel value in a look-up table. Results: 0.035% of detector pixels lead to clustered image artifacts in flat field corrected projections, where 80% of these pixels were traced back and linked to artifacts in the FPD. The performance of PGC method was tested in variety of imaging conditions and phantoms. The PGC method reduced clustered image artifacts and fixed pattern noise in projections, and ring artifacts in CBCT images. Conclusions: Clustered projection image artifacts that lead to ring artifacts in CBCT can be better identified with our artifact detection approach. When compared to the conventional flat field correction method, the proposed PGC method enables characterization of nonlinear pixel gain variations as a function of change in x-ray spectrum and intensity. Hence, it can better suppress image artifacts due to beam hardening as well as artifacts that arise from detector entrance exposure variation.

Original languageEnglish (US)
Article number091913
JournalMedical physics
Volume41
Issue number9
DOIs
StatePublished - Sep 2014

Keywords

  • CBCT
  • beam hardening
  • flat field correction
  • flat panel detectors
  • ring artifacts

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Reduction of ring artifacts in CBCT: Detection and correction of pixel gain variations in flat panel detectors'. Together they form a unique fingerprint.

Cite this