Regulation of Autophagy by Cytosolic Acetyl-Coenzyme A

Guillermo Mariño, Federico Pietrocola, Tobias Eisenberg, Yongli Kong, ShoaibAhmad Malik, Aleksandra Andryushkova, Sabrina Schroeder, Tobias Pendl, Alexandra Harger, Mireia Niso-Santano, Naoufal Zamzami, Marie Scoazec, Silvère Durand, DavidP Enot, ÁlvaroF Fernández, Isabelle Martins, Oliver Kepp, Laura Senovilla, Chantal Bauvy, Eugenia MorselliErika Vacchelli, Martin Bennetzen, Christoph Magnes, Frank Sinner, Thomas Pieber, Carlos López-Otín, MariaChiara Maiuri, Patrice Codogno, JensS Andersen, Joseph A Hill, Frank Madeo, Guido Kroemer

Research output: Contribution to journalArticlepeer-review

374 Scopus citations

Abstract

Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct manipulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of autophagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high AcCoA levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of autophagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions as a central metabolic regulator of autophagy, thus delineating AcCoA-centered pharmacological strategies that allow for the therapeutic manipulation of autophagy.

Original languageEnglish (US)
Pages (from-to)710-725
Number of pages16
JournalMolecular cell
Volume53
Issue number5
DOIs
StatePublished - Mar 6 2014

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Regulation of Autophagy by Cytosolic Acetyl-Coenzyme A'. Together they form a unique fingerprint.

Cite this