Regulation of cation channels in liver cells by intracellular calcium and protein kinase C

J. G. Fitz, A. H. Sostman, J. P. Middleton

Research output: Contribution to journalArticle

Abstract

The regulation of Ca2+-permeant cation channels in HTC hepatoma cells was investigated using patch clamp and fluorescence techniques. In intact cells, exposure to nucleotide analogues ATP, uridine 5'-triphosphate (UTP), and adenosine 5'-O-(3-thiotriphosphate) (ATPγS) caused transient opening of channels with linear conductances of ~18 and ~28 pS. Channels were permeable to Na+, K+, and Ca2+ and carried inward (depolarizing) current at the resting potential. Exposure to thapsigargin to increase cytosolic Ca2+ concentration ([Ca2+](i)) opened similar channels, suggesting that opening is stimulated by a rise in [Ca2+](i). In subconfluent monolayers, ATP increased [Ca2+](i) with half-maximal effects at ~7.4 μM; at 10-4 M, the peak increase in [Ca2+](i) was ATP > UTP > ATPγS > > 2-methyl- thioadenosine 5'-triphosphate, α,β-methyleneadenosine 5'-triphosphate, and adenosine. The relative potency suggests that the effects are mediated by 5'- nucleotide receptors. In excised inside-out patches, channels were not activated by myo-inositol 1,4,5-trisphosphate (50-100 μM) or myo-inositol 1,3,4,5-trisphosphate (20 μM) but opened after increases in Ca2+ to greater than ~250 nM, consistent with a direct role for Ca2+ in channel opening. In intact cells, channel opening was followed by a prolonged refractory period. Protein kinase C appears to contribute by inhibition of the ATP-stimulated [Ca2+](i) response and by direct inhibitory effects on the channel. These findings indicate that extracellular ATP leads to modulation of liver cell cation channels through activation of 5'-nucleotide receptors and are consistent with a model in which transient opening of channels is stimulated by a rise in [Ca2+](i) and subsequent closure is mediated by protein kinase C-dependent pathways.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Gastrointestinal and Liver Physiology
Volume266
Issue number4 29-4
StatePublished - 1994

Fingerprint

Protein Kinase C
Cations
Adenosine Triphosphate
Calcium
Uridine Triphosphate
Liver
Inositol 1,4,5-Trisphosphate
Nucleotides
Thapsigargin
Patch-Clamp Techniques
Membrane Potentials
Hepatocellular Carcinoma
Fluorescence
adenosine 5'-O-(3-thiotriphosphate)

Keywords

  • ATP
  • hepatocyte
  • ion channel
  • purinergic

ASJC Scopus subject areas

  • Gastroenterology
  • Physiology

Cite this

Regulation of cation channels in liver cells by intracellular calcium and protein kinase C. / Fitz, J. G.; Sostman, A. H.; Middleton, J. P.

In: American Journal of Physiology - Gastrointestinal and Liver Physiology, Vol. 266, No. 4 29-4, 1994.

Research output: Contribution to journalArticle

@article{039de975740e4019bbacfc88f0a582ab,
title = "Regulation of cation channels in liver cells by intracellular calcium and protein kinase C",
abstract = "The regulation of Ca2+-permeant cation channels in HTC hepatoma cells was investigated using patch clamp and fluorescence techniques. In intact cells, exposure to nucleotide analogues ATP, uridine 5'-triphosphate (UTP), and adenosine 5'-O-(3-thiotriphosphate) (ATPγS) caused transient opening of channels with linear conductances of ~18 and ~28 pS. Channels were permeable to Na+, K+, and Ca2+ and carried inward (depolarizing) current at the resting potential. Exposure to thapsigargin to increase cytosolic Ca2+ concentration ([Ca2+](i)) opened similar channels, suggesting that opening is stimulated by a rise in [Ca2+](i). In subconfluent monolayers, ATP increased [Ca2+](i) with half-maximal effects at ~7.4 μM; at 10-4 M, the peak increase in [Ca2+](i) was ATP > UTP > ATPγS > > 2-methyl- thioadenosine 5'-triphosphate, α,β-methyleneadenosine 5'-triphosphate, and adenosine. The relative potency suggests that the effects are mediated by 5'- nucleotide receptors. In excised inside-out patches, channels were not activated by myo-inositol 1,4,5-trisphosphate (50-100 μM) or myo-inositol 1,3,4,5-trisphosphate (20 μM) but opened after increases in Ca2+ to greater than ~250 nM, consistent with a direct role for Ca2+ in channel opening. In intact cells, channel opening was followed by a prolonged refractory period. Protein kinase C appears to contribute by inhibition of the ATP-stimulated [Ca2+](i) response and by direct inhibitory effects on the channel. These findings indicate that extracellular ATP leads to modulation of liver cell cation channels through activation of 5'-nucleotide receptors and are consistent with a model in which transient opening of channels is stimulated by a rise in [Ca2+](i) and subsequent closure is mediated by protein kinase C-dependent pathways.",
keywords = "ATP, hepatocyte, ion channel, purinergic",
author = "Fitz, {J. G.} and Sostman, {A. H.} and Middleton, {J. P.}",
year = "1994",
language = "English (US)",
volume = "266",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "4 29-4",

}

TY - JOUR

T1 - Regulation of cation channels in liver cells by intracellular calcium and protein kinase C

AU - Fitz, J. G.

AU - Sostman, A. H.

AU - Middleton, J. P.

PY - 1994

Y1 - 1994

N2 - The regulation of Ca2+-permeant cation channels in HTC hepatoma cells was investigated using patch clamp and fluorescence techniques. In intact cells, exposure to nucleotide analogues ATP, uridine 5'-triphosphate (UTP), and adenosine 5'-O-(3-thiotriphosphate) (ATPγS) caused transient opening of channels with linear conductances of ~18 and ~28 pS. Channels were permeable to Na+, K+, and Ca2+ and carried inward (depolarizing) current at the resting potential. Exposure to thapsigargin to increase cytosolic Ca2+ concentration ([Ca2+](i)) opened similar channels, suggesting that opening is stimulated by a rise in [Ca2+](i). In subconfluent monolayers, ATP increased [Ca2+](i) with half-maximal effects at ~7.4 μM; at 10-4 M, the peak increase in [Ca2+](i) was ATP > UTP > ATPγS > > 2-methyl- thioadenosine 5'-triphosphate, α,β-methyleneadenosine 5'-triphosphate, and adenosine. The relative potency suggests that the effects are mediated by 5'- nucleotide receptors. In excised inside-out patches, channels were not activated by myo-inositol 1,4,5-trisphosphate (50-100 μM) or myo-inositol 1,3,4,5-trisphosphate (20 μM) but opened after increases in Ca2+ to greater than ~250 nM, consistent with a direct role for Ca2+ in channel opening. In intact cells, channel opening was followed by a prolonged refractory period. Protein kinase C appears to contribute by inhibition of the ATP-stimulated [Ca2+](i) response and by direct inhibitory effects on the channel. These findings indicate that extracellular ATP leads to modulation of liver cell cation channels through activation of 5'-nucleotide receptors and are consistent with a model in which transient opening of channels is stimulated by a rise in [Ca2+](i) and subsequent closure is mediated by protein kinase C-dependent pathways.

AB - The regulation of Ca2+-permeant cation channels in HTC hepatoma cells was investigated using patch clamp and fluorescence techniques. In intact cells, exposure to nucleotide analogues ATP, uridine 5'-triphosphate (UTP), and adenosine 5'-O-(3-thiotriphosphate) (ATPγS) caused transient opening of channels with linear conductances of ~18 and ~28 pS. Channels were permeable to Na+, K+, and Ca2+ and carried inward (depolarizing) current at the resting potential. Exposure to thapsigargin to increase cytosolic Ca2+ concentration ([Ca2+](i)) opened similar channels, suggesting that opening is stimulated by a rise in [Ca2+](i). In subconfluent monolayers, ATP increased [Ca2+](i) with half-maximal effects at ~7.4 μM; at 10-4 M, the peak increase in [Ca2+](i) was ATP > UTP > ATPγS > > 2-methyl- thioadenosine 5'-triphosphate, α,β-methyleneadenosine 5'-triphosphate, and adenosine. The relative potency suggests that the effects are mediated by 5'- nucleotide receptors. In excised inside-out patches, channels were not activated by myo-inositol 1,4,5-trisphosphate (50-100 μM) or myo-inositol 1,3,4,5-trisphosphate (20 μM) but opened after increases in Ca2+ to greater than ~250 nM, consistent with a direct role for Ca2+ in channel opening. In intact cells, channel opening was followed by a prolonged refractory period. Protein kinase C appears to contribute by inhibition of the ATP-stimulated [Ca2+](i) response and by direct inhibitory effects on the channel. These findings indicate that extracellular ATP leads to modulation of liver cell cation channels through activation of 5'-nucleotide receptors and are consistent with a model in which transient opening of channels is stimulated by a rise in [Ca2+](i) and subsequent closure is mediated by protein kinase C-dependent pathways.

KW - ATP

KW - hepatocyte

KW - ion channel

KW - purinergic

UR - http://www.scopus.com/inward/record.url?scp=0028352129&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028352129&partnerID=8YFLogxK

M3 - Article

C2 - 7513961

VL - 266

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 4 29-4

ER -