Regulation of the activity and cellular localization of the circadian clock protein FRQ

Joonseok Cha, Haiyan Yuan, Yi Liu

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Eukaryotic circadian clocks employ autoregulatory negative feedback loops to control daily rhythms. In the filamentous fungus Neurospora, FRQ, FRH, WC-1, and WC-2 are the core components of the circadian negative feedback loop. To close the transcription-based negative feedback loop, the FRQ-FRH complex inhibits the activity of the WC complex in the nucleus by promoting the casein kinases-mediated WC phosphorylation. Despite its essential role in the nucleus, most FRQ is found in the cytoplasm. In this study, we mapped the FRQ regions that are important for its cellular localization. We show that the C-terminal part of FRQ, particularly the FRQ-FRH interaction domain, plays a major role in controlling FRQ localization. Both the mutation of the FRQ-FRH interaction domain and the down-regulation of FRH result in the nuclear enrichment of FRQ, suggesting that FRH regulates FRQ localization via a physical interaction. To study the role of FRQ phosphorylation, we examined the FRQ localization in wild-type as well as an array of FRQ kinase, FRQ phosphatase, and FRQ phosphorylation site mutants. Collectively, our results suggest that FRQ phosphorylation does not play a significant role in regulating its cellular localization. Instead, we find that phosphorylation of FRQ inhibits its transcriptional repressor activity in the circadian negative feedback loop. Such an effect is achieved by inhibiting the ability of FRQ to interact with WCC and casein kinase 1a. Our results indicate that the rhythmic FRQ phosphorylation profile observed is an important part of the negative feedback mechanism that drives robust circadian gene expression.

Original languageEnglish (US)
Pages (from-to)11469-11478
Number of pages10
JournalJournal of Biological Chemistry
Volume286
Issue number13
DOIs
StatePublished - Apr 1 2011

Fingerprint

Circadian Clocks
Phosphorylation
Clocks
Feedback
Casein Kinases
Proteins
Neurospora
Transcription
Fungi
Phosphoric Monoester Hydrolases
Gene expression
Cytoplasm
Phosphotransferases
Down-Regulation
Gene Expression
Mutation

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology
  • Molecular Biology

Cite this

Regulation of the activity and cellular localization of the circadian clock protein FRQ. / Cha, Joonseok; Yuan, Haiyan; Liu, Yi.

In: Journal of Biological Chemistry, Vol. 286, No. 13, 01.04.2011, p. 11469-11478.

Research output: Contribution to journalArticle

@article{ac3dd993b07b49558b830a948a5d44bf,
title = "Regulation of the activity and cellular localization of the circadian clock protein FRQ",
abstract = "Eukaryotic circadian clocks employ autoregulatory negative feedback loops to control daily rhythms. In the filamentous fungus Neurospora, FRQ, FRH, WC-1, and WC-2 are the core components of the circadian negative feedback loop. To close the transcription-based negative feedback loop, the FRQ-FRH complex inhibits the activity of the WC complex in the nucleus by promoting the casein kinases-mediated WC phosphorylation. Despite its essential role in the nucleus, most FRQ is found in the cytoplasm. In this study, we mapped the FRQ regions that are important for its cellular localization. We show that the C-terminal part of FRQ, particularly the FRQ-FRH interaction domain, plays a major role in controlling FRQ localization. Both the mutation of the FRQ-FRH interaction domain and the down-regulation of FRH result in the nuclear enrichment of FRQ, suggesting that FRH regulates FRQ localization via a physical interaction. To study the role of FRQ phosphorylation, we examined the FRQ localization in wild-type as well as an array of FRQ kinase, FRQ phosphatase, and FRQ phosphorylation site mutants. Collectively, our results suggest that FRQ phosphorylation does not play a significant role in regulating its cellular localization. Instead, we find that phosphorylation of FRQ inhibits its transcriptional repressor activity in the circadian negative feedback loop. Such an effect is achieved by inhibiting the ability of FRQ to interact with WCC and casein kinase 1a. Our results indicate that the rhythmic FRQ phosphorylation profile observed is an important part of the negative feedback mechanism that drives robust circadian gene expression.",
author = "Joonseok Cha and Haiyan Yuan and Yi Liu",
year = "2011",
month = "4",
day = "1",
doi = "10.1074/jbc.M111.219782",
language = "English (US)",
volume = "286",
pages = "11469--11478",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "13",

}

TY - JOUR

T1 - Regulation of the activity and cellular localization of the circadian clock protein FRQ

AU - Cha, Joonseok

AU - Yuan, Haiyan

AU - Liu, Yi

PY - 2011/4/1

Y1 - 2011/4/1

N2 - Eukaryotic circadian clocks employ autoregulatory negative feedback loops to control daily rhythms. In the filamentous fungus Neurospora, FRQ, FRH, WC-1, and WC-2 are the core components of the circadian negative feedback loop. To close the transcription-based negative feedback loop, the FRQ-FRH complex inhibits the activity of the WC complex in the nucleus by promoting the casein kinases-mediated WC phosphorylation. Despite its essential role in the nucleus, most FRQ is found in the cytoplasm. In this study, we mapped the FRQ regions that are important for its cellular localization. We show that the C-terminal part of FRQ, particularly the FRQ-FRH interaction domain, plays a major role in controlling FRQ localization. Both the mutation of the FRQ-FRH interaction domain and the down-regulation of FRH result in the nuclear enrichment of FRQ, suggesting that FRH regulates FRQ localization via a physical interaction. To study the role of FRQ phosphorylation, we examined the FRQ localization in wild-type as well as an array of FRQ kinase, FRQ phosphatase, and FRQ phosphorylation site mutants. Collectively, our results suggest that FRQ phosphorylation does not play a significant role in regulating its cellular localization. Instead, we find that phosphorylation of FRQ inhibits its transcriptional repressor activity in the circadian negative feedback loop. Such an effect is achieved by inhibiting the ability of FRQ to interact with WCC and casein kinase 1a. Our results indicate that the rhythmic FRQ phosphorylation profile observed is an important part of the negative feedback mechanism that drives robust circadian gene expression.

AB - Eukaryotic circadian clocks employ autoregulatory negative feedback loops to control daily rhythms. In the filamentous fungus Neurospora, FRQ, FRH, WC-1, and WC-2 are the core components of the circadian negative feedback loop. To close the transcription-based negative feedback loop, the FRQ-FRH complex inhibits the activity of the WC complex in the nucleus by promoting the casein kinases-mediated WC phosphorylation. Despite its essential role in the nucleus, most FRQ is found in the cytoplasm. In this study, we mapped the FRQ regions that are important for its cellular localization. We show that the C-terminal part of FRQ, particularly the FRQ-FRH interaction domain, plays a major role in controlling FRQ localization. Both the mutation of the FRQ-FRH interaction domain and the down-regulation of FRH result in the nuclear enrichment of FRQ, suggesting that FRH regulates FRQ localization via a physical interaction. To study the role of FRQ phosphorylation, we examined the FRQ localization in wild-type as well as an array of FRQ kinase, FRQ phosphatase, and FRQ phosphorylation site mutants. Collectively, our results suggest that FRQ phosphorylation does not play a significant role in regulating its cellular localization. Instead, we find that phosphorylation of FRQ inhibits its transcriptional repressor activity in the circadian negative feedback loop. Such an effect is achieved by inhibiting the ability of FRQ to interact with WCC and casein kinase 1a. Our results indicate that the rhythmic FRQ phosphorylation profile observed is an important part of the negative feedback mechanism that drives robust circadian gene expression.

UR - http://www.scopus.com/inward/record.url?scp=79953168091&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79953168091&partnerID=8YFLogxK

U2 - 10.1074/jbc.M111.219782

DO - 10.1074/jbc.M111.219782

M3 - Article

C2 - 21300798

AN - SCOPUS:79953168091

VL - 286

SP - 11469

EP - 11478

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 13

ER -