Reversibility of exercise-induced dendritic attenuation in brain cardiorespiratory and locomotor areas following exercise detraining

Amanda J. Nelson, Gary A. Iwamoto

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

It has been shown previously that dendritic branching in cardiorespiratory and locomotor brain areas can be attenuated with exercise training (ET). It was not known whether this process was reversible. Twenty-three (n = 23) male Sprague-Dawley rats were individually caged and divided into two groups: untrained (UN; n = 11) and detrained (DTR; n = 12). DTR were provided with a running wheel at 21 days of age and exercised spontaneously. After 120 days (70 days of ET followed by 50 days of detraining), ET indexes were obtained, including maximal oxygen uptake, percent body fat, resting heart rate, and heart weight-to-body weight ratios. The brain was processed according to a modified Golgi-Cox procedure. Impregnated neurons from the periaqueductal gray (PAG), posterior hypothalamic area (PH), nucleus of the tractus solitarius (NTS), and cuneiform nucleus (CfN) were examined in coronal sections. Neurons were traced using a camera lucida technique and analyzed using the Sholl concentric ring analysis of dendritic branching. t-Tests compared the mean number of intersections per neuron by grouping inner rings, outer rings, and total number of intersections per animal. There were no significant differences between UN and DTR in PH, PAG, CfN, and NTS in the inner rings, outer rings, and total number of intersections per animal. A separate group of animals was used to show that a training effect in the CfN and NTS was present at 56 days of ET. Our results show that dendritic attenuation resulting from 70 days of ET in PH, PAG, CfN, and NTS is completely reversed with 50 days of detraining.

Original languageEnglish (US)
Pages (from-to)1243-1251
Number of pages9
JournalJournal of Applied Physiology
Volume101
Issue number4
DOIs
StatePublished - 2006

Fingerprint

Solitary Nucleus
Periaqueductal Gray
Exercise
Brain
United Nations
Neurons
Running
Sprague Dawley Rats
Adipose Tissue
Heart Rate
Body Weight
Oxygen
Weights and Measures
Midbrain Reticular Formation

Keywords

  • Dendritic branching
  • Golgi staining
  • Locomotion
  • Neuroplasticity

ASJC Scopus subject areas

  • Physiology
  • Endocrinology
  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Cite this

@article{384c42d0d6ca4696ada0a514aeda7821,
title = "Reversibility of exercise-induced dendritic attenuation in brain cardiorespiratory and locomotor areas following exercise detraining",
abstract = "It has been shown previously that dendritic branching in cardiorespiratory and locomotor brain areas can be attenuated with exercise training (ET). It was not known whether this process was reversible. Twenty-three (n = 23) male Sprague-Dawley rats were individually caged and divided into two groups: untrained (UN; n = 11) and detrained (DTR; n = 12). DTR were provided with a running wheel at 21 days of age and exercised spontaneously. After 120 days (70 days of ET followed by 50 days of detraining), ET indexes were obtained, including maximal oxygen uptake, percent body fat, resting heart rate, and heart weight-to-body weight ratios. The brain was processed according to a modified Golgi-Cox procedure. Impregnated neurons from the periaqueductal gray (PAG), posterior hypothalamic area (PH), nucleus of the tractus solitarius (NTS), and cuneiform nucleus (CfN) were examined in coronal sections. Neurons were traced using a camera lucida technique and analyzed using the Sholl concentric ring analysis of dendritic branching. t-Tests compared the mean number of intersections per neuron by grouping inner rings, outer rings, and total number of intersections per animal. There were no significant differences between UN and DTR in PH, PAG, CfN, and NTS in the inner rings, outer rings, and total number of intersections per animal. A separate group of animals was used to show that a training effect in the CfN and NTS was present at 56 days of ET. Our results show that dendritic attenuation resulting from 70 days of ET in PH, PAG, CfN, and NTS is completely reversed with 50 days of detraining.",
keywords = "Dendritic branching, Golgi staining, Locomotion, Neuroplasticity",
author = "Nelson, {Amanda J.} and Iwamoto, {Gary A.}",
year = "2006",
doi = "10.1152/japplphysiol.00483.2006",
language = "English (US)",
volume = "101",
pages = "1243--1251",
journal = "Journal of Applied Physiology",
issn = "0161-7567",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - Reversibility of exercise-induced dendritic attenuation in brain cardiorespiratory and locomotor areas following exercise detraining

AU - Nelson, Amanda J.

AU - Iwamoto, Gary A.

PY - 2006

Y1 - 2006

N2 - It has been shown previously that dendritic branching in cardiorespiratory and locomotor brain areas can be attenuated with exercise training (ET). It was not known whether this process was reversible. Twenty-three (n = 23) male Sprague-Dawley rats were individually caged and divided into two groups: untrained (UN; n = 11) and detrained (DTR; n = 12). DTR were provided with a running wheel at 21 days of age and exercised spontaneously. After 120 days (70 days of ET followed by 50 days of detraining), ET indexes were obtained, including maximal oxygen uptake, percent body fat, resting heart rate, and heart weight-to-body weight ratios. The brain was processed according to a modified Golgi-Cox procedure. Impregnated neurons from the periaqueductal gray (PAG), posterior hypothalamic area (PH), nucleus of the tractus solitarius (NTS), and cuneiform nucleus (CfN) were examined in coronal sections. Neurons were traced using a camera lucida technique and analyzed using the Sholl concentric ring analysis of dendritic branching. t-Tests compared the mean number of intersections per neuron by grouping inner rings, outer rings, and total number of intersections per animal. There were no significant differences between UN and DTR in PH, PAG, CfN, and NTS in the inner rings, outer rings, and total number of intersections per animal. A separate group of animals was used to show that a training effect in the CfN and NTS was present at 56 days of ET. Our results show that dendritic attenuation resulting from 70 days of ET in PH, PAG, CfN, and NTS is completely reversed with 50 days of detraining.

AB - It has been shown previously that dendritic branching in cardiorespiratory and locomotor brain areas can be attenuated with exercise training (ET). It was not known whether this process was reversible. Twenty-three (n = 23) male Sprague-Dawley rats were individually caged and divided into two groups: untrained (UN; n = 11) and detrained (DTR; n = 12). DTR were provided with a running wheel at 21 days of age and exercised spontaneously. After 120 days (70 days of ET followed by 50 days of detraining), ET indexes were obtained, including maximal oxygen uptake, percent body fat, resting heart rate, and heart weight-to-body weight ratios. The brain was processed according to a modified Golgi-Cox procedure. Impregnated neurons from the periaqueductal gray (PAG), posterior hypothalamic area (PH), nucleus of the tractus solitarius (NTS), and cuneiform nucleus (CfN) were examined in coronal sections. Neurons were traced using a camera lucida technique and analyzed using the Sholl concentric ring analysis of dendritic branching. t-Tests compared the mean number of intersections per neuron by grouping inner rings, outer rings, and total number of intersections per animal. There were no significant differences between UN and DTR in PH, PAG, CfN, and NTS in the inner rings, outer rings, and total number of intersections per animal. A separate group of animals was used to show that a training effect in the CfN and NTS was present at 56 days of ET. Our results show that dendritic attenuation resulting from 70 days of ET in PH, PAG, CfN, and NTS is completely reversed with 50 days of detraining.

KW - Dendritic branching

KW - Golgi staining

KW - Locomotion

KW - Neuroplasticity

UR - http://www.scopus.com/inward/record.url?scp=33749355634&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33749355634&partnerID=8YFLogxK

U2 - 10.1152/japplphysiol.00483.2006

DO - 10.1152/japplphysiol.00483.2006

M3 - Article

C2 - 16794024

AN - SCOPUS:33749355634

VL - 101

SP - 1243

EP - 1251

JO - Journal of Applied Physiology

JF - Journal of Applied Physiology

SN - 0161-7567

IS - 4

ER -