Rituximab but not other anti-CD20 antibodies reverses multidrug resistance in 2 B lymphoma cell lines, blocks the activity of P-glycoprotein (P-gp), and induces P-gp to translocate out of lipid rafts

Maria Ana Ghetie, Michelle Crank, Stephanie Kufert, Iliodora Pop, Ellen Vitetta

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

The objective of this study was to investigate the ability of the anti-CD20 antibody, Rituximab (RTX), to inhibit the activity of P-glycoprotein (P-gp), and reverse multidrug resistance (MDR) in 2 P-gp+/CD20+ lymphoma cell lines. We determined whether RTX would chemosensitize the 2 P-gp+ cell lines in vitro, and inhibit the ability of the cells to efflux Rhodamine 123. One cell line was infected with an MDR1 vector and the other was generated by drug selection. We also determined whether RTX induced P-gp to translocate out of lipid rafts. RTX chemosensitized 2 different MDR cell lines, inhibited the activity of P-gp in both, and induced P-gp to translocate out of lipid rafts in the 1 cell line that was studied in greater detail. In contrast, 3 other anti-CD20 antibodies did not chemosensitize, inhibit the activity of P-gp, or induce it to translocate out of rafts, despite the fact that 1 antibody recognized the same epitope on CD20. Our results suggest that RTX can chemosensitize 2 CD20+/P-gp+ cell lines in vitro by inhibiting the activity of the P-gp pump. The inhibition of P-gp activity correlated with the ability of RTX to induce P-gp to translocate out of lipid rafts. Although the mechanisms by which RTX effects P-gp translocation and activity are not yet known, they are not associated with acid-sphingomyelinase activation in raft microdomains, as described for the antiproliferative activity of RTX.

Original languageEnglish (US)
Pages (from-to)536-544
Number of pages9
JournalJournal of Immunotherapy
Volume29
Issue number5
DOIs
StatePublished - Sep 2006

Fingerprint

Multiple Drug Resistance
P-Glycoprotein
Anti-Idiotypic Antibodies
Lymphoma
Lipids
Cell Line
Rhodamine 123
Sphingomyelin Phosphodiesterase
Rituximab
Epitopes
Acids
Antibodies

Keywords

  • CD20
  • Lipid rafts
  • Multidrug resistance
  • P-gp
  • Rituximab

ASJC Scopus subject areas

  • Cancer Research
  • Pharmacology
  • Immunology

Cite this

Rituximab but not other anti-CD20 antibodies reverses multidrug resistance in 2 B lymphoma cell lines, blocks the activity of P-glycoprotein (P-gp), and induces P-gp to translocate out of lipid rafts. / Ghetie, Maria Ana; Crank, Michelle; Kufert, Stephanie; Pop, Iliodora; Vitetta, Ellen.

In: Journal of Immunotherapy, Vol. 29, No. 5, 09.2006, p. 536-544.

Research output: Contribution to journalArticle

@article{aa9b8f51353c49ff8807a0c40aae9929,
title = "Rituximab but not other anti-CD20 antibodies reverses multidrug resistance in 2 B lymphoma cell lines, blocks the activity of P-glycoprotein (P-gp), and induces P-gp to translocate out of lipid rafts",
abstract = "The objective of this study was to investigate the ability of the anti-CD20 antibody, Rituximab (RTX), to inhibit the activity of P-glycoprotein (P-gp), and reverse multidrug resistance (MDR) in 2 P-gp+/CD20+ lymphoma cell lines. We determined whether RTX would chemosensitize the 2 P-gp+ cell lines in vitro, and inhibit the ability of the cells to efflux Rhodamine 123. One cell line was infected with an MDR1 vector and the other was generated by drug selection. We also determined whether RTX induced P-gp to translocate out of lipid rafts. RTX chemosensitized 2 different MDR cell lines, inhibited the activity of P-gp in both, and induced P-gp to translocate out of lipid rafts in the 1 cell line that was studied in greater detail. In contrast, 3 other anti-CD20 antibodies did not chemosensitize, inhibit the activity of P-gp, or induce it to translocate out of rafts, despite the fact that 1 antibody recognized the same epitope on CD20. Our results suggest that RTX can chemosensitize 2 CD20+/P-gp+ cell lines in vitro by inhibiting the activity of the P-gp pump. The inhibition of P-gp activity correlated with the ability of RTX to induce P-gp to translocate out of lipid rafts. Although the mechanisms by which RTX effects P-gp translocation and activity are not yet known, they are not associated with acid-sphingomyelinase activation in raft microdomains, as described for the antiproliferative activity of RTX.",
keywords = "CD20, Lipid rafts, Multidrug resistance, P-gp, Rituximab",
author = "Ghetie, {Maria Ana} and Michelle Crank and Stephanie Kufert and Iliodora Pop and Ellen Vitetta",
year = "2006",
month = "9",
doi = "10.1097/01.cji.0000211307.05869.6c",
language = "English (US)",
volume = "29",
pages = "536--544",
journal = "Journal of Immunotherapy",
issn = "1524-9557",
publisher = "Lippincott Williams and Wilkins",
number = "5",

}

TY - JOUR

T1 - Rituximab but not other anti-CD20 antibodies reverses multidrug resistance in 2 B lymphoma cell lines, blocks the activity of P-glycoprotein (P-gp), and induces P-gp to translocate out of lipid rafts

AU - Ghetie, Maria Ana

AU - Crank, Michelle

AU - Kufert, Stephanie

AU - Pop, Iliodora

AU - Vitetta, Ellen

PY - 2006/9

Y1 - 2006/9

N2 - The objective of this study was to investigate the ability of the anti-CD20 antibody, Rituximab (RTX), to inhibit the activity of P-glycoprotein (P-gp), and reverse multidrug resistance (MDR) in 2 P-gp+/CD20+ lymphoma cell lines. We determined whether RTX would chemosensitize the 2 P-gp+ cell lines in vitro, and inhibit the ability of the cells to efflux Rhodamine 123. One cell line was infected with an MDR1 vector and the other was generated by drug selection. We also determined whether RTX induced P-gp to translocate out of lipid rafts. RTX chemosensitized 2 different MDR cell lines, inhibited the activity of P-gp in both, and induced P-gp to translocate out of lipid rafts in the 1 cell line that was studied in greater detail. In contrast, 3 other anti-CD20 antibodies did not chemosensitize, inhibit the activity of P-gp, or induce it to translocate out of rafts, despite the fact that 1 antibody recognized the same epitope on CD20. Our results suggest that RTX can chemosensitize 2 CD20+/P-gp+ cell lines in vitro by inhibiting the activity of the P-gp pump. The inhibition of P-gp activity correlated with the ability of RTX to induce P-gp to translocate out of lipid rafts. Although the mechanisms by which RTX effects P-gp translocation and activity are not yet known, they are not associated with acid-sphingomyelinase activation in raft microdomains, as described for the antiproliferative activity of RTX.

AB - The objective of this study was to investigate the ability of the anti-CD20 antibody, Rituximab (RTX), to inhibit the activity of P-glycoprotein (P-gp), and reverse multidrug resistance (MDR) in 2 P-gp+/CD20+ lymphoma cell lines. We determined whether RTX would chemosensitize the 2 P-gp+ cell lines in vitro, and inhibit the ability of the cells to efflux Rhodamine 123. One cell line was infected with an MDR1 vector and the other was generated by drug selection. We also determined whether RTX induced P-gp to translocate out of lipid rafts. RTX chemosensitized 2 different MDR cell lines, inhibited the activity of P-gp in both, and induced P-gp to translocate out of lipid rafts in the 1 cell line that was studied in greater detail. In contrast, 3 other anti-CD20 antibodies did not chemosensitize, inhibit the activity of P-gp, or induce it to translocate out of rafts, despite the fact that 1 antibody recognized the same epitope on CD20. Our results suggest that RTX can chemosensitize 2 CD20+/P-gp+ cell lines in vitro by inhibiting the activity of the P-gp pump. The inhibition of P-gp activity correlated with the ability of RTX to induce P-gp to translocate out of lipid rafts. Although the mechanisms by which RTX effects P-gp translocation and activity are not yet known, they are not associated with acid-sphingomyelinase activation in raft microdomains, as described for the antiproliferative activity of RTX.

KW - CD20

KW - Lipid rafts

KW - Multidrug resistance

KW - P-gp

KW - Rituximab

UR - http://www.scopus.com/inward/record.url?scp=33748683955&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33748683955&partnerID=8YFLogxK

U2 - 10.1097/01.cji.0000211307.05869.6c

DO - 10.1097/01.cji.0000211307.05869.6c

M3 - Article

C2 - 16971809

AN - SCOPUS:33748683955

VL - 29

SP - 536

EP - 544

JO - Journal of Immunotherapy

JF - Journal of Immunotherapy

SN - 1524-9557

IS - 5

ER -