Role of CBP/p300 and SRC-1 in transcriptional regulation of the pulmonary surfactant protein-A (SP-A) gene by thyroid transcription factor-1 (TTF-1)

Ming Yi, Guo Xia Tong, Barbara Murry, Carole R. Mendelson

Research output: Contribution to journalArticle

54 Citations (Scopus)

Abstract

Surfactant protein-A (SP-A) gene expression is developmentally regulated in fetal lung type II cells and is enhanced by cAMP. cAMP stimulation of SP-A gene expression is mediated by protein kinase A (PKA) phosphorylation of thyroid transcription factor I (TTF-1), expressed selectively in developing lung epithelium. In this study, we analyzed roles of CREB-binding protein (CBP) and steroid receptor coactivator-1 (SRC-1) in TTF-1 regulation of SP-A expression. Upon differentiation of human fetal lung in culture, nuclear localization of CBP, SRC-1, and TTF-1 increased in ductular epithelium in association with type II cell differentiation and induction of SP-A expression. In transient transfections, CBP and SRC-1 acted synergistically with TTF-1 to increase SP-A promoter activity. Overexpression of PKA catalytic subunit enhanced hSP-A promoter activation by SRC-1 plus TTF-1. Adenoviral E1A overexpression reduced TTF-1 ± SRC-1 induction of SP-A promoter activity, suggesting a role of endogenous CBP/p300. TTF-1 interacted with SRC-1 and CBP in vitro. SRC-1 immunodepletion from type II cell nuclear extracts reduced binding to the TTF-1 binding element upstream of SP-A gene. In cultured type II cells, cAMP increased TTF-1 acetylation. This suggests that cAMP-mediated TTF-1 phosphorylation facilitates interaction with CBP and SRC-1, resulting in its hyperacetylation, further enhancing TTF-1 DNA-binding and transcriptional activity.

Original languageEnglish (US)
Pages (from-to)2997-3005
Number of pages9
JournalJournal of Biological Chemistry
Volume277
Issue number4
DOIs
StatePublished - Jan 25 2002

Fingerprint

Pulmonary Surfactant-Associated Proteins
Nuclear Receptor Coactivator 1
CREB-Binding Protein
Pulmonary Surfactant-Associated Protein A
Genes
Phosphorylation
Cyclic AMP-Dependent Protein Kinases
Gene expression
Lung
thyroid nuclear factor 1
Epithelium
Gene Expression
Acetylation
Cell Extracts
Transfection

ASJC Scopus subject areas

  • Biochemistry

Cite this

Role of CBP/p300 and SRC-1 in transcriptional regulation of the pulmonary surfactant protein-A (SP-A) gene by thyroid transcription factor-1 (TTF-1). / Yi, Ming; Tong, Guo Xia; Murry, Barbara; Mendelson, Carole R.

In: Journal of Biological Chemistry, Vol. 277, No. 4, 25.01.2002, p. 2997-3005.

Research output: Contribution to journalArticle

@article{91e4f0285ea6457aa7f8ac0789f0ec7d,
title = "Role of CBP/p300 and SRC-1 in transcriptional regulation of the pulmonary surfactant protein-A (SP-A) gene by thyroid transcription factor-1 (TTF-1)",
abstract = "Surfactant protein-A (SP-A) gene expression is developmentally regulated in fetal lung type II cells and is enhanced by cAMP. cAMP stimulation of SP-A gene expression is mediated by protein kinase A (PKA) phosphorylation of thyroid transcription factor I (TTF-1), expressed selectively in developing lung epithelium. In this study, we analyzed roles of CREB-binding protein (CBP) and steroid receptor coactivator-1 (SRC-1) in TTF-1 regulation of SP-A expression. Upon differentiation of human fetal lung in culture, nuclear localization of CBP, SRC-1, and TTF-1 increased in ductular epithelium in association with type II cell differentiation and induction of SP-A expression. In transient transfections, CBP and SRC-1 acted synergistically with TTF-1 to increase SP-A promoter activity. Overexpression of PKA catalytic subunit enhanced hSP-A promoter activation by SRC-1 plus TTF-1. Adenoviral E1A overexpression reduced TTF-1 ± SRC-1 induction of SP-A promoter activity, suggesting a role of endogenous CBP/p300. TTF-1 interacted with SRC-1 and CBP in vitro. SRC-1 immunodepletion from type II cell nuclear extracts reduced binding to the TTF-1 binding element upstream of SP-A gene. In cultured type II cells, cAMP increased TTF-1 acetylation. This suggests that cAMP-mediated TTF-1 phosphorylation facilitates interaction with CBP and SRC-1, resulting in its hyperacetylation, further enhancing TTF-1 DNA-binding and transcriptional activity.",
author = "Ming Yi and Tong, {Guo Xia} and Barbara Murry and Mendelson, {Carole R.}",
year = "2002",
month = "1",
day = "25",
doi = "10.1074/jbc.M109793200",
language = "English (US)",
volume = "277",
pages = "2997--3005",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "4",

}

TY - JOUR

T1 - Role of CBP/p300 and SRC-1 in transcriptional regulation of the pulmonary surfactant protein-A (SP-A) gene by thyroid transcription factor-1 (TTF-1)

AU - Yi, Ming

AU - Tong, Guo Xia

AU - Murry, Barbara

AU - Mendelson, Carole R.

PY - 2002/1/25

Y1 - 2002/1/25

N2 - Surfactant protein-A (SP-A) gene expression is developmentally regulated in fetal lung type II cells and is enhanced by cAMP. cAMP stimulation of SP-A gene expression is mediated by protein kinase A (PKA) phosphorylation of thyroid transcription factor I (TTF-1), expressed selectively in developing lung epithelium. In this study, we analyzed roles of CREB-binding protein (CBP) and steroid receptor coactivator-1 (SRC-1) in TTF-1 regulation of SP-A expression. Upon differentiation of human fetal lung in culture, nuclear localization of CBP, SRC-1, and TTF-1 increased in ductular epithelium in association with type II cell differentiation and induction of SP-A expression. In transient transfections, CBP and SRC-1 acted synergistically with TTF-1 to increase SP-A promoter activity. Overexpression of PKA catalytic subunit enhanced hSP-A promoter activation by SRC-1 plus TTF-1. Adenoviral E1A overexpression reduced TTF-1 ± SRC-1 induction of SP-A promoter activity, suggesting a role of endogenous CBP/p300. TTF-1 interacted with SRC-1 and CBP in vitro. SRC-1 immunodepletion from type II cell nuclear extracts reduced binding to the TTF-1 binding element upstream of SP-A gene. In cultured type II cells, cAMP increased TTF-1 acetylation. This suggests that cAMP-mediated TTF-1 phosphorylation facilitates interaction with CBP and SRC-1, resulting in its hyperacetylation, further enhancing TTF-1 DNA-binding and transcriptional activity.

AB - Surfactant protein-A (SP-A) gene expression is developmentally regulated in fetal lung type II cells and is enhanced by cAMP. cAMP stimulation of SP-A gene expression is mediated by protein kinase A (PKA) phosphorylation of thyroid transcription factor I (TTF-1), expressed selectively in developing lung epithelium. In this study, we analyzed roles of CREB-binding protein (CBP) and steroid receptor coactivator-1 (SRC-1) in TTF-1 regulation of SP-A expression. Upon differentiation of human fetal lung in culture, nuclear localization of CBP, SRC-1, and TTF-1 increased in ductular epithelium in association with type II cell differentiation and induction of SP-A expression. In transient transfections, CBP and SRC-1 acted synergistically with TTF-1 to increase SP-A promoter activity. Overexpression of PKA catalytic subunit enhanced hSP-A promoter activation by SRC-1 plus TTF-1. Adenoviral E1A overexpression reduced TTF-1 ± SRC-1 induction of SP-A promoter activity, suggesting a role of endogenous CBP/p300. TTF-1 interacted with SRC-1 and CBP in vitro. SRC-1 immunodepletion from type II cell nuclear extracts reduced binding to the TTF-1 binding element upstream of SP-A gene. In cultured type II cells, cAMP increased TTF-1 acetylation. This suggests that cAMP-mediated TTF-1 phosphorylation facilitates interaction with CBP and SRC-1, resulting in its hyperacetylation, further enhancing TTF-1 DNA-binding and transcriptional activity.

UR - http://www.scopus.com/inward/record.url?scp=0037169507&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037169507&partnerID=8YFLogxK

U2 - 10.1074/jbc.M109793200

DO - 10.1074/jbc.M109793200

M3 - Article

C2 - 11713256

AN - SCOPUS:0037169507

VL - 277

SP - 2997

EP - 3005

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 4

ER -