TY - JOUR
T1 - Sample size calculation for comparing time-averaged responses in K-group repeated binary outcomes
AU - Wang, Jijia
AU - Zhang, Song
AU - Ahn, Chul
N1 - Publisher Copyright:
© 2018 The Korean Statistical Society, and Korean International Statistical Society.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2018/5/1
Y1 - 2018/5/1
N2 - In clinical trials with repeated measurements, the time-averaged difference (TAD) may provide a more powerful evaluation of treatment efficacy than the rate of changes over time when the treatment effect has rapid onset and repeated measurements continue across an extended period after a maximum effect is achieved (Overall and Doyle, Controlled Clinical Trials, 15, 100-123, 1994). The sample size formula has been investigated by many researchers for the evaluation of TAD in two treatment groups. For the evaluation of TAD in multi-arm trials, Zhang and Ahn (Computational Statistics & Data Analysis, 58, 283-291, 2013) and Lou et al. (Communications in Statistics-Theory and Methods, 46, 11204-11213, 2017b) developed the sample size formulas for continuous outcomes and count outcomes, respectively. In this paper, we derive a sample size formula to evaluate the TAD of the repeated binary outcomes in multi-arm trials using the generalized estimating equation approach. This proposed sample size formula accounts for various correlation structures and missing patterns (including a mixture of independent missing and monotone missing patterns) that are frequently encountered by practitioners in clinical trials. We conduct simulation studies to assess the performance of the proposed sample size formula under a wide range of design parameters. The results show that the empirical powers and the empirical Type I errors are close to nominal levels. We illustrate our proposed method using a clinical trial example.
AB - In clinical trials with repeated measurements, the time-averaged difference (TAD) may provide a more powerful evaluation of treatment efficacy than the rate of changes over time when the treatment effect has rapid onset and repeated measurements continue across an extended period after a maximum effect is achieved (Overall and Doyle, Controlled Clinical Trials, 15, 100-123, 1994). The sample size formula has been investigated by many researchers for the evaluation of TAD in two treatment groups. For the evaluation of TAD in multi-arm trials, Zhang and Ahn (Computational Statistics & Data Analysis, 58, 283-291, 2013) and Lou et al. (Communications in Statistics-Theory and Methods, 46, 11204-11213, 2017b) developed the sample size formulas for continuous outcomes and count outcomes, respectively. In this paper, we derive a sample size formula to evaluate the TAD of the repeated binary outcomes in multi-arm trials using the generalized estimating equation approach. This proposed sample size formula accounts for various correlation structures and missing patterns (including a mixture of independent missing and monotone missing patterns) that are frequently encountered by practitioners in clinical trials. We conduct simulation studies to assess the performance of the proposed sample size formula under a wide range of design parameters. The results show that the empirical powers and the empirical Type I errors are close to nominal levels. We illustrate our proposed method using a clinical trial example.
KW - Multi-arm trials
KW - Sample size formula
KW - Time-averaged difference
UR - http://www.scopus.com/inward/record.url?scp=85050734707&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85050734707&partnerID=8YFLogxK
U2 - 10.29220/CSAM.2018.25.3.321
DO - 10.29220/CSAM.2018.25.3.321
M3 - Article
AN - SCOPUS:85050734707
SN - 2287-7843
VL - 25
SP - 321
EP - 328
JO - Communications for Statistical Applications and Methods
JF - Communications for Statistical Applications and Methods
IS - 3
ER -