Satiety behavior is regulated by ASI/ASH reciprocal antagonism

Kristen C. Davis, Young In Choi, Jeongho Kim, Young Jai You

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Appropriate decision-making is essential for ensuring survival; one such decision is whether to eat. Overall metabolic state and the safety of food are the two factors we examined using C. elegans to ask whether the metabolic state regulates neuronal activities and corresponding feeding behavior. We monitored the activity of sensory neurons that are activated by nutritious (or appetitive) stimuli (ASI) and aversive stimuli (ASH) in starved vs. well-fed worms during stimuli presentation. Starvation reduces ASH activity to aversive stimuli while increasing ASI activity to nutritious stimuli, showing the responsiveness of each neuron is modulated by overall metabolic state. When we monitored satiety quiescence behavior that reflects the overall metabolic state, ablation of ASI and ASH produce the opposite behavior, showing the two neurons interact to control the decision to eat or not. This circuit provides a simple approach to how neurons handle sensory conflict and reach a decision that is translated to behavior.

Original languageEnglish (US)
Article number6918
JournalScientific reports
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2018
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Satiety behavior is regulated by ASI/ASH reciprocal antagonism'. Together they form a unique fingerprint.

Cite this