Site-agnostic 3D dose distribution prediction with deep learning neural networks

Maryam Mashayekhi, Itzel Ramirez Tapia, Anjali Balagopal, Xinran Zhong, Azar Sadeghnejad Barkousaraie, Rafe McBeth, Mu Han Lin, Steve Jiang, Dan Nguyen

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Purpose: Typically, the current dose prediction models are limited to small amounts of data and require retraining for a specific site, often leading to suboptimal performance. We propose a site-agnostic, three-dimensional dose distribution prediction model using deep learning that can leverage data from any treatment site, thus increasing the total data available to train the model. Applying our proposed model to a new target treatment site requires only a brief fine-tuning of the model to the new data and involves no modifications to the model input channels or its parameters. Thus, it can be efficiently adapted to a different treatment site, even with a small training dataset. Methods: This study uses two separate datasets/treatment sites: data from patients with prostate cancer treated with intensity-modulated radiation therapy (source data), and data from patients with head-and-neck cancer treated with volumetric-modulated arc therapy (target data). We first developed a source model with 3D UNet architecture, trained from random initial weights on the source data. We evaluated the performance of this model on the source data. We then studied the generalizability of the model to the new target dataset via transfer learning. To do this, we built three more models, all with the same 3D UNet architecture: target model, adapted model, and combined model. The source and target models were trained on the source and target data from random initial weights, respectively. The adapted model fine-tuned the source model to the target domain by using the target data. Finally, the combined model was trained from random initial weights on a combined data pool consisting of both target and source datasets. We tested all four models on the target dataset and evaluated quantitative dose-volume histogram metrics for the planning target volume (PTV) and organs at risk (OARs). Results: When tested on the source treatment site, the source model accurately predicted the dose distributions with average (mean, max) absolute dose errors of (0.32%±0.14, 2.37%±0.93) (PTV) relative to the prescription dose, and highest mean dose error of 1.68%±0.76, and highest max dose error of 5.47%± 3.31 for femoral head right. The error in PTV dose coverage prediction is 3.21%±1.51 for D98, 3.04%±1.69 for D95, and 1.83%±1.01 for D02. Averaging across all OARs, the source model predicted the OAR mean dose within 1.38% and the OAR max dose within 3.64%. For the target treatment site, the target model average (mean, max) absolute dose errors relative to the prescription dose for the PTV were (1.08%±0.95, 2.90%±1.35). Left cochlea had the highest mean and max dose errors of 5.37%±5.82 and 8.33%±8.88, respectively. The errors in PTV dose coverage prediction for D98 and D95 were 2.88%±1.59 and 2.55%±1.28, respectively. The target model can predict the OAR mean dose within 2.43% and the OAR max dose within 4.33% on average across all OARs. Conclusion: We developed a site-agnostic model for three-dimensional dose prediction and tested its adaptability to a new target treatment site via transfer learning. Our proposed model can make accurate predictions with limited training data.

Original languageEnglish (US)
Pages (from-to)1391-1406
Number of pages16
JournalMedical physics
Volume49
Issue number3
DOIs
StatePublished - Mar 2022

Keywords

  • deep learning
  • dose prediction
  • head and neck cancer
  • prostate cancer
  • radiation therapy

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Site-agnostic 3D dose distribution prediction with deep learning neural networks'. Together they form a unique fingerprint.

Cite this