Spatial comparison between the H -scan format for classification of ultrasound scatterers and histology - Preliminary results using an animal model of breast cancer

Mawia Khairalseed, Girdhari Rijal, Kenneth Hoyt

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

H-scan imaging is a new ultrasound (US) technique used to visualize the relative size of acoustic scatterers. An important issue is the sensitivity of H-scan US image analysis to subtle changes in scatterer sizes. To that end, the purpose of this study was to evaluate the sensitivity of the H -scan US image analysis to scatterer size with a direct comparison to histological measures made at the cellular level. Image data was acquired using a programmable US scanner (Vantage 256, Verasonics Inc) equipped with a 256-element L22-8v capacitive micromachined US transducer (CMUT, Kolo Medical). Plane wave imaging with 5 angles was performed at a center frequency of 15 MHz. To generate H-scan US images, parallel convolution filters based on nth-ordered Gaussian-weighted Hermite polynomial functions (i.e GH2, GH6, and GH10) were applied to the radiofrequency (RF) data to measure the relative strength of the received signals. The filter outputs were then color coded to form the final H-scan US image display. In vivo H-scan US imaging was performed using human breast cancer xenograft in athymic mice. After euthanasia, excised tumor tissue underwent histological processing and the nuclei were stained. Digitized images were then used to compute two key features, namely, nuclear size and spacing, followed by correlation with the co-registered H-scan US data. The H-scan US images exhibited gross spatial patterns that were mirrored in the histology microscopy images. A significant relationship was found between the local H-scan US image intensity and physical measurements of both nuclear size and spacing (R2 > 0. 61, p < 0.001). Overall, preliminary results from use of preclinical model of breast cancer reveals that in vivo H-scan US images linearly correlate with physical measures of nucleus size and spacing as quantified from co-registered histologic images.

Original languageEnglish (US)
Title of host publicationIUS 2020 - International Ultrasonics Symposium, Proceedings
PublisherIEEE Computer Society
ISBN (Electronic)9781728154480
DOIs
StatePublished - Sep 7 2020
Event2020 IEEE International Ultrasonics Symposium, IUS 2020 - Las Vegas, United States
Duration: Sep 7 2020Sep 11 2020

Publication series

NameIEEE International Ultrasonics Symposium, IUS
Volume2020-September
ISSN (Print)1948-5719
ISSN (Electronic)1948-5727

Conference

Conference2020 IEEE International Ultrasonics Symposium, IUS 2020
Country/TerritoryUnited States
CityLas Vegas
Period9/7/209/11/20

Keywords

  • CMUT
  • H-scan format
  • Plane waves
  • Spatial angular compounding
  • Tissue characterization
  • Ultrasound imaging

ASJC Scopus subject areas

  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'Spatial comparison between the H -scan format for classification of ultrasound scatterers and histology - Preliminary results using an animal model of breast cancer'. Together they form a unique fingerprint.

Cite this