Specific messenger RNA changes in Joseph disease cerebella

M. R. Morrison, R. N. Rosenberg

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Joseph disease is an autosomal-dominant, spinocerebellar degeneration characterized at the biochemical level by elevations in the steady-state levels of several abundant proteins (H, J, and L) in affected brain areas such as the cerebellar cortex. The increased levels of these proteins could either be a consequence of a relative increase in their de novo synthesis or result from altered rates of proteolysis in degenerating brain cells. These alternatives can be distinguished by comparing the in vitro protein-synthetic capacities of the messenger ribonucleic acid populations isolated from cerebellar cortex of control subjects and patients with Joseph disease. Protein H (glial fibrillary acidic protein) is synthesized at detectable levels by all messenger ribonucleic acid isolates, and the levels of its translatable messenger ribonucleic acid are reproducibly increased in ribonucleic acids isolated from cerebellar cortex of patients with Joseph disease as compared with those isolated from cerebellar cortex of control subjects. Thus, the increased level of protein H in Joseph disease is a consequence of an increase in its de novo synthesis and is correlated with the increased number of cerebellar glial cells. In contrast to these results, there is no detectable synthesis of proteins J and L by messenger ribonucleic acid populations isolated from cerebellar cortex of either Joseph disease patients or control subjects, suggesting that the increased levels of these proteins in affected cerebellar cortex are a consequence of posttranslational protein modifications.

Original languageEnglish (US)
Pages (from-to)73-79
Number of pages7
JournalAnnals of Neurology
Volume14
Issue number1
StatePublished - 1983

Fingerprint

Machado-Joseph Disease
Cerebellum
Cerebellar Cortex
Messenger RNA
RNA
Proteins
Spinocerebellar Degenerations
Glial Fibrillary Acidic Protein
Brain
Post Translational Protein Processing
Neuroglia
Population
Proteolysis

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Specific messenger RNA changes in Joseph disease cerebella. / Morrison, M. R.; Rosenberg, R. N.

In: Annals of Neurology, Vol. 14, No. 1, 1983, p. 73-79.

Research output: Contribution to journalArticle

@article{596b8f3d3e8448978fd37a425b2ae3fb,
title = "Specific messenger RNA changes in Joseph disease cerebella",
abstract = "Joseph disease is an autosomal-dominant, spinocerebellar degeneration characterized at the biochemical level by elevations in the steady-state levels of several abundant proteins (H, J, and L) in affected brain areas such as the cerebellar cortex. The increased levels of these proteins could either be a consequence of a relative increase in their de novo synthesis or result from altered rates of proteolysis in degenerating brain cells. These alternatives can be distinguished by comparing the in vitro protein-synthetic capacities of the messenger ribonucleic acid populations isolated from cerebellar cortex of control subjects and patients with Joseph disease. Protein H (glial fibrillary acidic protein) is synthesized at detectable levels by all messenger ribonucleic acid isolates, and the levels of its translatable messenger ribonucleic acid are reproducibly increased in ribonucleic acids isolated from cerebellar cortex of patients with Joseph disease as compared with those isolated from cerebellar cortex of control subjects. Thus, the increased level of protein H in Joseph disease is a consequence of an increase in its de novo synthesis and is correlated with the increased number of cerebellar glial cells. In contrast to these results, there is no detectable synthesis of proteins J and L by messenger ribonucleic acid populations isolated from cerebellar cortex of either Joseph disease patients or control subjects, suggesting that the increased levels of these proteins in affected cerebellar cortex are a consequence of posttranslational protein modifications.",
author = "Morrison, {M. R.} and Rosenberg, {R. N.}",
year = "1983",
language = "English (US)",
volume = "14",
pages = "73--79",
journal = "Annals of Neurology",
issn = "0364-5134",
publisher = "John Wiley and Sons Inc.",
number = "1",

}

TY - JOUR

T1 - Specific messenger RNA changes in Joseph disease cerebella

AU - Morrison, M. R.

AU - Rosenberg, R. N.

PY - 1983

Y1 - 1983

N2 - Joseph disease is an autosomal-dominant, spinocerebellar degeneration characterized at the biochemical level by elevations in the steady-state levels of several abundant proteins (H, J, and L) in affected brain areas such as the cerebellar cortex. The increased levels of these proteins could either be a consequence of a relative increase in their de novo synthesis or result from altered rates of proteolysis in degenerating brain cells. These alternatives can be distinguished by comparing the in vitro protein-synthetic capacities of the messenger ribonucleic acid populations isolated from cerebellar cortex of control subjects and patients with Joseph disease. Protein H (glial fibrillary acidic protein) is synthesized at detectable levels by all messenger ribonucleic acid isolates, and the levels of its translatable messenger ribonucleic acid are reproducibly increased in ribonucleic acids isolated from cerebellar cortex of patients with Joseph disease as compared with those isolated from cerebellar cortex of control subjects. Thus, the increased level of protein H in Joseph disease is a consequence of an increase in its de novo synthesis and is correlated with the increased number of cerebellar glial cells. In contrast to these results, there is no detectable synthesis of proteins J and L by messenger ribonucleic acid populations isolated from cerebellar cortex of either Joseph disease patients or control subjects, suggesting that the increased levels of these proteins in affected cerebellar cortex are a consequence of posttranslational protein modifications.

AB - Joseph disease is an autosomal-dominant, spinocerebellar degeneration characterized at the biochemical level by elevations in the steady-state levels of several abundant proteins (H, J, and L) in affected brain areas such as the cerebellar cortex. The increased levels of these proteins could either be a consequence of a relative increase in their de novo synthesis or result from altered rates of proteolysis in degenerating brain cells. These alternatives can be distinguished by comparing the in vitro protein-synthetic capacities of the messenger ribonucleic acid populations isolated from cerebellar cortex of control subjects and patients with Joseph disease. Protein H (glial fibrillary acidic protein) is synthesized at detectable levels by all messenger ribonucleic acid isolates, and the levels of its translatable messenger ribonucleic acid are reproducibly increased in ribonucleic acids isolated from cerebellar cortex of patients with Joseph disease as compared with those isolated from cerebellar cortex of control subjects. Thus, the increased level of protein H in Joseph disease is a consequence of an increase in its de novo synthesis and is correlated with the increased number of cerebellar glial cells. In contrast to these results, there is no detectable synthesis of proteins J and L by messenger ribonucleic acid populations isolated from cerebellar cortex of either Joseph disease patients or control subjects, suggesting that the increased levels of these proteins in affected cerebellar cortex are a consequence of posttranslational protein modifications.

UR - http://www.scopus.com/inward/record.url?scp=0020636721&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0020636721&partnerID=8YFLogxK

M3 - Article

VL - 14

SP - 73

EP - 79

JO - Annals of Neurology

JF - Annals of Neurology

SN - 0364-5134

IS - 1

ER -