Stability of motor representations after paralysis

Charles Guan, Tyson Aflalo, Carey Y. Zhang, Elena Amoruso, Emily R. Rosario, Nader Pouratian, Richard A. Andersen

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Neural plasticity allows us to learn skills and incorporate new experiences. What happens when our lived experiences fundamentally change, such as after a severe injury? To address this question, we analyzed intracortical population activity in the posterior parietal cortex (PPC) of a tetraplegic adult as she controlled a virtual hand through a brain–computer interface (BCI). By attempting to move her fingers, she could accurately drive the corresponding virtual fingers. Neural activity during finger movements exhibited robust representational structure similar to fMRI recordings of able-bodied individuals’ motor cortex, which is known to reflect able-bodied usage patterns. The finger representational structure was consistent throughout multiple sessions, even though the structure contributed to BCI decoding errors. Within individual BCI movements, the representational structure was dynamic, first resembling muscle activation patterns and then resembling the anticipated sensory consequences. Our results reveal that motor representations in PPC reflect able-bodied motor usage patterns even after paralysis, and BCIs can re-engage these stable representations to restore lost motor functions.

Original languageEnglish (US)
Article numbere74478
JournaleLife
Volume11
DOIs
StatePublished - Sep 2022

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'Stability of motor representations after paralysis'. Together they form a unique fingerprint.

Cite this