Statistical methods of background correction for Illumina BeadArray data

Yang Xie, Xinlei Wang, Michael Story

Research output: Contribution to journalArticle

49 Scopus citations

Abstract

Motivation: Advances in technology have made different microarray platforms available. Among the many, Illumina BeadArrays are relatively new and have captured significant market share. With BeadArray technology, high data quality is generated from low sample input at reduced cost. However, the analysis methods for Illumina BeadArrays are far behind those for Affymetrix oligonucleotide arrays, and so need to be improved. Results: In this article, we consider the problem of background correction for BeadArray data. One distinct feature of BeadArrays is that for each array, the noise is controlled by over 1000 bead types conjugated with non-specific oligonucleotide sequences. We extend the robust multi-array analysis (RMA) background correction model to incorporate the information from negative control beads, and consider three commonly used approaches for parameter estimation, namely, non-parametric, maximum likelihood estimation (MLE) and Bayesian estimation. The proposed approaches, as well as the existing background correction methods, are compared through simulation studies and a data example. We find that the maximum likelihood and Bayes methods seem to be the most promising.

Original languageEnglish (US)
Pages (from-to)751-757
Number of pages7
JournalBioinformatics
Volume25
Issue number6
DOIs
StatePublished - Mar 1 2009

    Fingerprint

ASJC Scopus subject areas

  • Statistics and Probability
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Computational Theory and Mathematics
  • Computational Mathematics

Cite this