Stretch reflex coupling between the hip and knee: Implications for impaired gait following stroke

James M. Finley, Eric J. Perreault, Yasin Y. Dhaher

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Individuals with hemiparetic stroke often exhibit an abnormal coupling between the frontal plane of the hip and saggital plane of the knee during gait. The purpose of this study was to determine if stretch sensitive reflexes, which are known to be altered following stroke, exhibit similar coupling between the muscles of the hip and knee in the post-stroke population. Eighteen subjects were recruited for this study including ten with hemiparesis resulting from stroke and eight unimpaired, age-matched controls. A servomotor was used to apply ramp and hold perturbations to both the hip and knee joints in separate sessions and electromyographic activity was recorded in eight muscles of the lower limb. Hip abduction perturbations elicited abnormal activation in rectus femoris (RF) in seven of ten stroke subjects with amplitudes ranging from 3.2 to 12.5% of the maximum voluntary contraction (MVC). Only two of eight control subjects exhibited any activity in RF and these responses were only 2.1 and 2.7% of MVC. To determine if the responses in the stroke group were a result of muscle stretch, a musculoskeletal model was used to simulate the experimental abduction perturbations and estimate muscle length changes. The simulation revealed that RF should be shortened by the perturbations and this suggests that the response was not likely due to direct stretch. Moreover, knee flexion perturbations elicited responses in the hip adductors (AL) with a mean amplitude of 5.1 ± 3.8% of MVC across all stroke subjects while no significant responses were recorded in controls. The presence of a reciprocal, reflex-mediated coupling between RF and AL following stroke suggests that changes in the excitability of spinal networks may contribute to the development of abnormal inter-joint coordination patterns observed during hemiparetic gait.

Original languageEnglish (US)
Pages (from-to)529-540
Number of pages12
JournalExperimental Brain Research
Volume188
Issue number4
DOIs
StatePublished - Jul 2008
Externally publishedYes

ASJC Scopus subject areas

  • Neuroscience(all)

Fingerprint Dive into the research topics of 'Stretch reflex coupling between the hip and knee: Implications for impaired gait following stroke'. Together they form a unique fingerprint.

Cite this