Structural basis for PtdInsP2-mediated human TRPML1 regulation

Michael Fine, Philip Schmiege, Xiaochun Li

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Transient receptor potential mucolipin 1 (TRPML1), a lysosomal channel, maintains the low pH and calcium levels for lysosomal function. Several small molecules modulate TRPML1 activity. ML-SA1, a synthetic agonist, binds to the pore region and phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), a natural lipid, stimulates channel activity to a lesser extent than ML-SA1; moreover, PtdIns(4,5)P2, another natural lipid, prevents TRPML1-mediated calcium release. Notably, PtdIns(3,5)P2 and ML-SA1 cooperate further increasing calcium efflux. Here we report the structures of human TRPML1 at pH 5.0 with PtdIns(3,5)P2, PtdIns(4,5)P2, or ML-SA1 and PtdIns(3,5)P2, revealing a unique lipid-binding site. PtdIns(3,5)P2 and PtdIns(4,5)P2 bind to the extended helices of S1, S2, and S3. The phosphate group of PtdIns(3,5)P2 induces Y355 to form a π-cation interaction with R403, moving the S4–S5 linker, thus allosterically activating the channel. Our structures and electrophysiological characterizations reveal an allosteric site and provide molecular insight into how lipids regulate TRP channels.

Original languageEnglish (US)
Article number4192
JournalNature Communications
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2018

Fingerprint

Phosphatidylinositol 4,5-Diphosphate
lipids
calcium
Lipids
efflux
Calcium
helices
phosphates
Allosteric Site
porosity
cations
phosphatidylinositol 3,5-diphosphate
Cations
molecules
Phosphates
Binding Sites
interactions
Molecules

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Cite this

Structural basis for PtdInsP2-mediated human TRPML1 regulation. / Fine, Michael; Schmiege, Philip; Li, Xiaochun.

In: Nature Communications, Vol. 9, No. 1, 4192, 01.12.2018.

Research output: Contribution to journalArticle

@article{11339403a07f46789c79c794eb5c3c29,
title = "Structural basis for PtdInsP2-mediated human TRPML1 regulation",
abstract = "Transient receptor potential mucolipin 1 (TRPML1), a lysosomal channel, maintains the low pH and calcium levels for lysosomal function. Several small molecules modulate TRPML1 activity. ML-SA1, a synthetic agonist, binds to the pore region and phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), a natural lipid, stimulates channel activity to a lesser extent than ML-SA1; moreover, PtdIns(4,5)P2, another natural lipid, prevents TRPML1-mediated calcium release. Notably, PtdIns(3,5)P2 and ML-SA1 cooperate further increasing calcium efflux. Here we report the structures of human TRPML1 at pH 5.0 with PtdIns(3,5)P2, PtdIns(4,5)P2, or ML-SA1 and PtdIns(3,5)P2, revealing a unique lipid-binding site. PtdIns(3,5)P2 and PtdIns(4,5)P2 bind to the extended helices of S1, S2, and S3. The phosphate group of PtdIns(3,5)P2 induces Y355 to form a π-cation interaction with R403, moving the S4–S5 linker, thus allosterically activating the channel. Our structures and electrophysiological characterizations reveal an allosteric site and provide molecular insight into how lipids regulate TRP channels.",
author = "Michael Fine and Philip Schmiege and Xiaochun Li",
year = "2018",
month = "12",
day = "1",
doi = "10.1038/s41467-018-06493-7",
language = "English (US)",
volume = "9",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",
number = "1",

}

TY - JOUR

T1 - Structural basis for PtdInsP2-mediated human TRPML1 regulation

AU - Fine, Michael

AU - Schmiege, Philip

AU - Li, Xiaochun

PY - 2018/12/1

Y1 - 2018/12/1

N2 - Transient receptor potential mucolipin 1 (TRPML1), a lysosomal channel, maintains the low pH and calcium levels for lysosomal function. Several small molecules modulate TRPML1 activity. ML-SA1, a synthetic agonist, binds to the pore region and phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), a natural lipid, stimulates channel activity to a lesser extent than ML-SA1; moreover, PtdIns(4,5)P2, another natural lipid, prevents TRPML1-mediated calcium release. Notably, PtdIns(3,5)P2 and ML-SA1 cooperate further increasing calcium efflux. Here we report the structures of human TRPML1 at pH 5.0 with PtdIns(3,5)P2, PtdIns(4,5)P2, or ML-SA1 and PtdIns(3,5)P2, revealing a unique lipid-binding site. PtdIns(3,5)P2 and PtdIns(4,5)P2 bind to the extended helices of S1, S2, and S3. The phosphate group of PtdIns(3,5)P2 induces Y355 to form a π-cation interaction with R403, moving the S4–S5 linker, thus allosterically activating the channel. Our structures and electrophysiological characterizations reveal an allosteric site and provide molecular insight into how lipids regulate TRP channels.

AB - Transient receptor potential mucolipin 1 (TRPML1), a lysosomal channel, maintains the low pH and calcium levels for lysosomal function. Several small molecules modulate TRPML1 activity. ML-SA1, a synthetic agonist, binds to the pore region and phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), a natural lipid, stimulates channel activity to a lesser extent than ML-SA1; moreover, PtdIns(4,5)P2, another natural lipid, prevents TRPML1-mediated calcium release. Notably, PtdIns(3,5)P2 and ML-SA1 cooperate further increasing calcium efflux. Here we report the structures of human TRPML1 at pH 5.0 with PtdIns(3,5)P2, PtdIns(4,5)P2, or ML-SA1 and PtdIns(3,5)P2, revealing a unique lipid-binding site. PtdIns(3,5)P2 and PtdIns(4,5)P2 bind to the extended helices of S1, S2, and S3. The phosphate group of PtdIns(3,5)P2 induces Y355 to form a π-cation interaction with R403, moving the S4–S5 linker, thus allosterically activating the channel. Our structures and electrophysiological characterizations reveal an allosteric site and provide molecular insight into how lipids regulate TRP channels.

UR - http://www.scopus.com/inward/record.url?scp=85054732457&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054732457&partnerID=8YFLogxK

U2 - 10.1038/s41467-018-06493-7

DO - 10.1038/s41467-018-06493-7

M3 - Article

C2 - 30305615

AN - SCOPUS:85054732457

VL - 9

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

IS - 1

M1 - 4192

ER -