Structural basis of arrestin-3 activation and signaling

Qiuyan Chen, Nicole A. Perry, Sergey A. Vishnivetskiy, Sandra Berndt, Nathaniel C. Gilbert, Ya Zhuo, Prashant K. Singh, Jonas Tholen, Melanie D. Ohi, Eugenia V. Gurevich, Chad A Brautigam, Candice S. Klug, Vsevolod V. Gurevich, T. M. Iverson

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

A unique aspect of arrestin-3 is its ability to support both receptor-dependent and receptor-independent signaling. Here, we show that inositol hexakisphosphate (IP6) is a non-receptor activator of arrestin-3 and report the structure of IP6-Activated arrestin-3 at 2.4-Å resolution. IP6-Activated arrestin-3 exhibits an inter-domain twist and a displaced C-Tail, hallmarks of active arrestin. IP6 binds to the arrestin phosphate sensor, and is stabilized by trimerization. Analysis of the trimerization surface, which is also the receptor-binding surface, suggests a feature called the finger loop as a key region of the activation sensor. We show that finger loop helicity and flexibility may underlie coupling to hundreds of diverse receptors and also promote arrestin-3 activation by IP6. Importantly, we show that effector-binding sites on arrestins have distinct conformations in the basal and activated states, acting as switch regions. These switch regions may work with the inter-domain twist to initiate and direct arrestin-mediated signaling.

Original languageEnglish (US)
Article number1427
JournalNature communications
Volume8
Issue number1
DOIs
StatePublished - Dec 1 2017

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Structural basis of arrestin-3 activation and signaling'. Together they form a unique fingerprint.

Cite this