TY - JOUR
T1 - Structural insights into the Ca2+-dependent gating of the human mitochondrial calcium uniporter
AU - Wang, Yan
AU - Han, Yan
AU - She, Ji
AU - Nguyen, Nam X.
AU - Mootha, Vamsi K.
AU - Bai, Xiao Chen
AU - Jiang, Youxing
N1 - Publisher Copyright:
The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/7/3
Y1 - 2020/7/3
N2 - Mitochondrial Ca2+ uptake plays an important role in cellular physiology such as modulating ATP production, regulating cytoplasmic Ca2+ dynamics, and triggering cell death, and is mediated by the mitochondrial calcium uniporter, a highly selective calcium channel localized to the inner mitochondrial membrane. In humans, the uniporter functions as a holocomplex consisting of MCU, EMRE, MICU1 and MICU2, among which MCU and EMRE form a subcomplex and function as the conductive channel while MICU1 and MICU2 are EF-hand proteins that regulate the channel activity in a Ca2+ dependent manner. Here we present the EM structures of the human mitochondrial calcium uniporter holocomplex (uniplex) in the presence and absence of Ca2+, revealing distinct Ca2+ dependent assembly of the uniplex. In the presence of Ca2+, MICU1 and MICU2 form a heterotetramer of MICU1-(MICU2)2-MICU1 and bridge the dimeric form of the MCU-EMRE subcomplex through electrostatic interactions between MICU1 and EMRE, leaving the MCU channel pore unblocked. In the absence of Ca2+, multiple uniplex assemblies are observed but is predominantly occupied by the MICU1 subunit from a MICU1-MICU2 heterodimer blocking the MCU channel pore. Our structural observations suggest that Ca2+ changes the dimerization interaction between MICU1 and MICU2, which in turn determines how the MICU1-MICU2 subcomplex interacts with the MCU-EMRE channel and, consequently, changes the distribution of the uniplex assemblies between the blocked and unblocked states.
AB - Mitochondrial Ca2+ uptake plays an important role in cellular physiology such as modulating ATP production, regulating cytoplasmic Ca2+ dynamics, and triggering cell death, and is mediated by the mitochondrial calcium uniporter, a highly selective calcium channel localized to the inner mitochondrial membrane. In humans, the uniporter functions as a holocomplex consisting of MCU, EMRE, MICU1 and MICU2, among which MCU and EMRE form a subcomplex and function as the conductive channel while MICU1 and MICU2 are EF-hand proteins that regulate the channel activity in a Ca2+ dependent manner. Here we present the EM structures of the human mitochondrial calcium uniporter holocomplex (uniplex) in the presence and absence of Ca2+, revealing distinct Ca2+ dependent assembly of the uniplex. In the presence of Ca2+, MICU1 and MICU2 form a heterotetramer of MICU1-(MICU2)2-MICU1 and bridge the dimeric form of the MCU-EMRE subcomplex through electrostatic interactions between MICU1 and EMRE, leaving the MCU channel pore unblocked. In the absence of Ca2+, multiple uniplex assemblies are observed but is predominantly occupied by the MICU1 subunit from a MICU1-MICU2 heterodimer blocking the MCU channel pore. Our structural observations suggest that Ca2+ changes the dimerization interaction between MICU1 and MICU2, which in turn determines how the MICU1-MICU2 subcomplex interacts with the MCU-EMRE channel and, consequently, changes the distribution of the uniplex assemblies between the blocked and unblocked states.
UR - http://www.scopus.com/inward/record.url?scp=85098828688&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85098828688&partnerID=8YFLogxK
U2 - 10.1101/2020.07.02.183970
DO - 10.1101/2020.07.02.183970
M3 - Article
AN - SCOPUS:85098828688
JO - Seminars in Fetal and Neonatal Medicine
JF - Seminars in Fetal and Neonatal Medicine
SN - 1744-165X
ER -