SU‐E‐I‐03: Evaluation of Impacts of Two Assumptions in Cone Beam CT Geometry Calibration

Y. xu, H. li, H. Yan, L. Cervino, S. Jiang, X. Jia, L. Zhou

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Purpose: Cone‐beam CT image quality crucially depends on the mechanical geometry accuracy. One of the state‐of‐art calibration methods utilizes two projected ellipses trajectory of two BBs moving along circular paths. The method, however, assumes that detector rotation angle about the axis in the source rotational plane is zero. It also ignores inter‐ellipse location constraints when more than two BBs are used and different ellipses are identified individually. The purpose of this study is to evaluate the necessity of these two issues. Methods: We simulated projections of our in‐house table CBCT system with realistic geometrical parameters. We particularly set the angle that were ignored in the ellipse‐based calibration method to be non‐zero. We have also simulated the cases with irregular precessions of the CBCT rotational axis, which make the projected BB trajectory not ellipses and hence demonstrate the effects of neglecting the inter‐ellipse correlations. For each case, the ellipse‐based geometry calibration is conducted. The calibrated pixel locations are compared with the ground truth. Results: The pixel size in our detector is 0.298 mm and source to detector distance is 1500mm. For detector rotation angles in the real machine range of 0∼1.0 degree, the maximum error of the calibrated pixel location is 0.596 mm (∼2 pixels) and the mean errors is up to 0.196 mm (∼0.7 pixels). For the cases with irregular precession angles of 0∼0.3 degree, the maximum and mean pixel location error is 0.894 mm (∼3 pixels) and up to 0.230 mm(∼0.8 pixels), respectively. Conclusion: Considering the inherent accuracy of the calibration method is 4.31 pixels (2.187mm), it is found that assuming a zero detector rotation angle and neglecting the inter‐ellipse constraints do not lead to serious degradations of calibration accuracy. This project is supported by Guangdong Strategic emerging industry core technology research (Grant No.2011A081402003) and Guangzhou Municipal special major science and technology programs (Grant No.11BppZLjj2120029).

Original languageEnglish (US)
Pages (from-to)125
Number of pages1
JournalMedical Physics
Volume40
Issue number6
DOIs
StatePublished - 2013

Fingerprint

Cone-Beam Computed Tomography
Calibration
Technology
Industry
Research

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Cite this

SU‐E‐I‐03 : Evaluation of Impacts of Two Assumptions in Cone Beam CT Geometry Calibration. / xu, Y.; li, H.; Yan, H.; Cervino, L.; Jiang, S.; Jia, X.; Zhou, L.

In: Medical Physics, Vol. 40, No. 6, 2013, p. 125.

Research output: Contribution to journalArticle

xu, Y. ; li, H. ; Yan, H. ; Cervino, L. ; Jiang, S. ; Jia, X. ; Zhou, L. / SU‐E‐I‐03 : Evaluation of Impacts of Two Assumptions in Cone Beam CT Geometry Calibration. In: Medical Physics. 2013 ; Vol. 40, No. 6. pp. 125.
@article{d1fcf8e5bd6a42c892d539c50c126ce3,
title = "SU‐E‐I‐03: Evaluation of Impacts of Two Assumptions in Cone Beam CT Geometry Calibration",
abstract = "Purpose: Cone‐beam CT image quality crucially depends on the mechanical geometry accuracy. One of the state‐of‐art calibration methods utilizes two projected ellipses trajectory of two BBs moving along circular paths. The method, however, assumes that detector rotation angle about the axis in the source rotational plane is zero. It also ignores inter‐ellipse location constraints when more than two BBs are used and different ellipses are identified individually. The purpose of this study is to evaluate the necessity of these two issues. Methods: We simulated projections of our in‐house table CBCT system with realistic geometrical parameters. We particularly set the angle that were ignored in the ellipse‐based calibration method to be non‐zero. We have also simulated the cases with irregular precessions of the CBCT rotational axis, which make the projected BB trajectory not ellipses and hence demonstrate the effects of neglecting the inter‐ellipse correlations. For each case, the ellipse‐based geometry calibration is conducted. The calibrated pixel locations are compared with the ground truth. Results: The pixel size in our detector is 0.298 mm and source to detector distance is 1500mm. For detector rotation angles in the real machine range of 0∼1.0 degree, the maximum error of the calibrated pixel location is 0.596 mm (∼2 pixels) and the mean errors is up to 0.196 mm (∼0.7 pixels). For the cases with irregular precession angles of 0∼0.3 degree, the maximum and mean pixel location error is 0.894 mm (∼3 pixels) and up to 0.230 mm(∼0.8 pixels), respectively. Conclusion: Considering the inherent accuracy of the calibration method is 4.31 pixels (2.187mm), it is found that assuming a zero detector rotation angle and neglecting the inter‐ellipse constraints do not lead to serious degradations of calibration accuracy. This project is supported by Guangdong Strategic emerging industry core technology research (Grant No.2011A081402003) and Guangzhou Municipal special major science and technology programs (Grant No.11BppZLjj2120029).",
author = "Y. xu and H. li and H. Yan and L. Cervino and S. Jiang and X. Jia and L. Zhou",
year = "2013",
doi = "10.1118/1.4814103",
language = "English (US)",
volume = "40",
pages = "125",
journal = "Medical Physics",
issn = "0094-2405",
publisher = "AAPM - American Association of Physicists in Medicine",
number = "6",

}

TY - JOUR

T1 - SU‐E‐I‐03

T2 - Evaluation of Impacts of Two Assumptions in Cone Beam CT Geometry Calibration

AU - xu, Y.

AU - li, H.

AU - Yan, H.

AU - Cervino, L.

AU - Jiang, S.

AU - Jia, X.

AU - Zhou, L.

PY - 2013

Y1 - 2013

N2 - Purpose: Cone‐beam CT image quality crucially depends on the mechanical geometry accuracy. One of the state‐of‐art calibration methods utilizes two projected ellipses trajectory of two BBs moving along circular paths. The method, however, assumes that detector rotation angle about the axis in the source rotational plane is zero. It also ignores inter‐ellipse location constraints when more than two BBs are used and different ellipses are identified individually. The purpose of this study is to evaluate the necessity of these two issues. Methods: We simulated projections of our in‐house table CBCT system with realistic geometrical parameters. We particularly set the angle that were ignored in the ellipse‐based calibration method to be non‐zero. We have also simulated the cases with irregular precessions of the CBCT rotational axis, which make the projected BB trajectory not ellipses and hence demonstrate the effects of neglecting the inter‐ellipse correlations. For each case, the ellipse‐based geometry calibration is conducted. The calibrated pixel locations are compared with the ground truth. Results: The pixel size in our detector is 0.298 mm and source to detector distance is 1500mm. For detector rotation angles in the real machine range of 0∼1.0 degree, the maximum error of the calibrated pixel location is 0.596 mm (∼2 pixels) and the mean errors is up to 0.196 mm (∼0.7 pixels). For the cases with irregular precession angles of 0∼0.3 degree, the maximum and mean pixel location error is 0.894 mm (∼3 pixels) and up to 0.230 mm(∼0.8 pixels), respectively. Conclusion: Considering the inherent accuracy of the calibration method is 4.31 pixels (2.187mm), it is found that assuming a zero detector rotation angle and neglecting the inter‐ellipse constraints do not lead to serious degradations of calibration accuracy. This project is supported by Guangdong Strategic emerging industry core technology research (Grant No.2011A081402003) and Guangzhou Municipal special major science and technology programs (Grant No.11BppZLjj2120029).

AB - Purpose: Cone‐beam CT image quality crucially depends on the mechanical geometry accuracy. One of the state‐of‐art calibration methods utilizes two projected ellipses trajectory of two BBs moving along circular paths. The method, however, assumes that detector rotation angle about the axis in the source rotational plane is zero. It also ignores inter‐ellipse location constraints when more than two BBs are used and different ellipses are identified individually. The purpose of this study is to evaluate the necessity of these two issues. Methods: We simulated projections of our in‐house table CBCT system with realistic geometrical parameters. We particularly set the angle that were ignored in the ellipse‐based calibration method to be non‐zero. We have also simulated the cases with irregular precessions of the CBCT rotational axis, which make the projected BB trajectory not ellipses and hence demonstrate the effects of neglecting the inter‐ellipse correlations. For each case, the ellipse‐based geometry calibration is conducted. The calibrated pixel locations are compared with the ground truth. Results: The pixel size in our detector is 0.298 mm and source to detector distance is 1500mm. For detector rotation angles in the real machine range of 0∼1.0 degree, the maximum error of the calibrated pixel location is 0.596 mm (∼2 pixels) and the mean errors is up to 0.196 mm (∼0.7 pixels). For the cases with irregular precession angles of 0∼0.3 degree, the maximum and mean pixel location error is 0.894 mm (∼3 pixels) and up to 0.230 mm(∼0.8 pixels), respectively. Conclusion: Considering the inherent accuracy of the calibration method is 4.31 pixels (2.187mm), it is found that assuming a zero detector rotation angle and neglecting the inter‐ellipse constraints do not lead to serious degradations of calibration accuracy. This project is supported by Guangdong Strategic emerging industry core technology research (Grant No.2011A081402003) and Guangzhou Municipal special major science and technology programs (Grant No.11BppZLjj2120029).

UR - http://www.scopus.com/inward/record.url?scp=84909969106&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84909969106&partnerID=8YFLogxK

U2 - 10.1118/1.4814103

DO - 10.1118/1.4814103

M3 - Article

AN - SCOPUS:84909969106

VL - 40

SP - 125

JO - Medical Physics

JF - Medical Physics

SN - 0094-2405

IS - 6

ER -