Synthesis and characterisation of a boron-rich symmetric triazine bearing a hypoxia-targeting nitroimidazole moiety

Tobias Hartwig Bünning, Luigi Panza, Abdel Kareem Azab, Barbara Muz, Silvia Fallarini, Daniela Imperio

Research output: Contribution to journalArticlepeer-review

Abstract

Boron Neutron Capture Therapy (BNCT) is a binary therapy that promises to be suitable in treating many non-curable cancers. To that, the discovery of new boron compounds able to accumulate selectively in the tumour tissue is still required. Hypoxia, a deficiency of oxygen in tumor tissue, is a great challenge in the conventional treatment of cancer, because hypoxic areas are resistant to conventional anticancer treatments. 2-Nitroimidazole derivatives are known to be hypoxia markers due to their enrichment by bioreduction in hypoxic cells. In the present work, 2-nitroimidazole was chosen as the starting point for the synthesis of a new boron-containing compound based on a 1,3,5-triazine skeleton. Two o-carborane moieties were inserted to achieve a high ratio of boron on the molecular weight, exploiting a short PEG spacer to enhance the polarity of the compound and outdistance the active part from the core. The compound showed no toxicity on normal human primary fibroblasts, while it showed noteworthy toxicity in multiple myeloma cells together with a consistent intracellular boron accumulation.

Original languageEnglish (US)
Article number202
Pages (from-to)1-9
Number of pages9
JournalSymmetry
Volume13
Issue number2
DOIs
StatePublished - Feb 2021
Externally publishedYes

Keywords

  • BNCT
  • Boron accumulation
  • Carboranes
  • Nitroimidazole
  • Triazines

ASJC Scopus subject areas

  • Computer Science (miscellaneous)
  • Chemistry (miscellaneous)
  • Mathematics(all)
  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Synthesis and characterisation of a boron-rich symmetric triazine bearing a hypoxia-targeting nitroimidazole moiety'. Together they form a unique fingerprint.

Cite this