Synthesis, equilibrium, and kinetic properties of the gadolinium(III) complexes of three triazacyclodecanetriacetate ligands

E. Brucher, S. Cortes, F. Chavez, A. D. Sherry

Research output: Contribution to journalArticle

66 Citations (Scopus)

Abstract

Three new 10-membered-ring triaza tricarboxylate ligands have been synthesized and the formations of their Gd3+ complexes examined. The ligands 1,4,7-triazacyclodecane-N,N′,N″-triacetate (DETA3), 9-methyl-1,4,7-triazacyclodecane-N,N′,N″-triacetate (MeDETA3-), and 9,9-dimethyl-1,4,7-triazacyclodecane-N,N′,N″-triacetate (Me2DETA3-) have an unusually high first protonation constant (log K1 ≈ 14-15), and evidence is presented for the formation of a strongly hydrogen-bonded proton between the two nitrogens that share the propylene bridge in the monoprotonated forms of these chelates. Exchange of the hydrogen-bonded proton is slow below 0°C, and its 1H NMR signal has been detected. Complexation with Gd3+ is also slow, preventing determination of metal ion-ligand stabilities by potentiometry. Conditional stability constants for Gd(DETA), Gd(MeDETA), and Gd-(Me2DETA) were measured by using a proton relaxivity technique and compared with similar data for the 9-membered-ring macrocyclic complex Gd(NOTA). The rates of formation of Gd(DETA) and Gd(MeDETA) are similar, while Gd(Me2DETA) forms more slowly. The rate-determining step of complexation is proton loss and rearrangement of a monoprotonated intermediate, formed in a fast preequilibrium reaction. Dissociation of the complexes takes place both in a spontaneous fashion and through a proton-assisted pathway. The rate of both processes decreases in the order Gd(Me2DETA) ≫ Gd(NOTA) > Gd(DETA) > Gd(MeDETA). An increase in ring size from 9 to 10 and substitution of a methyl group onto a ring carbon of the ligand lead to increased kinetic stabilities of the complexes. The substitution of two methyl groups onto a ring carbon, however, results in a significant decrease in both the thermodynamic and kinetic stabilities of the resulting Gd3+ complex.

Original languageEnglish (US)
Pages (from-to)2092-2097
Number of pages6
JournalInorganic Chemistry
Volume30
Issue number9
StatePublished - 1991

Fingerprint

Gadolinium
gadolinium
DEET
Protons
Ligands
ligands
Kinetics
protons
rings
kinetics
synthesis
Complexation
Hydrogen
Substitution reactions
Carbon
substitutes
potentiometric analysis
carbon
Protonation
hydrogen

ASJC Scopus subject areas

  • Inorganic Chemistry

Cite this

Synthesis, equilibrium, and kinetic properties of the gadolinium(III) complexes of three triazacyclodecanetriacetate ligands. / Brucher, E.; Cortes, S.; Chavez, F.; Sherry, A. D.

In: Inorganic Chemistry, Vol. 30, No. 9, 1991, p. 2092-2097.

Research output: Contribution to journalArticle

@article{5312036fde844c5fb19eee9b161ea9a6,
title = "Synthesis, equilibrium, and kinetic properties of the gadolinium(III) complexes of three triazacyclodecanetriacetate ligands",
abstract = "Three new 10-membered-ring triaza tricarboxylate ligands have been synthesized and the formations of their Gd3+ complexes examined. The ligands 1,4,7-triazacyclodecane-N,N′,N″-triacetate (DETA3), 9-methyl-1,4,7-triazacyclodecane-N,N′,N″-triacetate (MeDETA3-), and 9,9-dimethyl-1,4,7-triazacyclodecane-N,N′,N″-triacetate (Me2DETA3-) have an unusually high first protonation constant (log K1 ≈ 14-15), and evidence is presented for the formation of a strongly hydrogen-bonded proton between the two nitrogens that share the propylene bridge in the monoprotonated forms of these chelates. Exchange of the hydrogen-bonded proton is slow below 0°C, and its 1H NMR signal has been detected. Complexation with Gd3+ is also slow, preventing determination of metal ion-ligand stabilities by potentiometry. Conditional stability constants for Gd(DETA), Gd(MeDETA), and Gd-(Me2DETA) were measured by using a proton relaxivity technique and compared with similar data for the 9-membered-ring macrocyclic complex Gd(NOTA). The rates of formation of Gd(DETA) and Gd(MeDETA) are similar, while Gd(Me2DETA) forms more slowly. The rate-determining step of complexation is proton loss and rearrangement of a monoprotonated intermediate, formed in a fast preequilibrium reaction. Dissociation of the complexes takes place both in a spontaneous fashion and through a proton-assisted pathway. The rate of both processes decreases in the order Gd(Me2DETA) ≫ Gd(NOTA) > Gd(DETA) > Gd(MeDETA). An increase in ring size from 9 to 10 and substitution of a methyl group onto a ring carbon of the ligand lead to increased kinetic stabilities of the complexes. The substitution of two methyl groups onto a ring carbon, however, results in a significant decrease in both the thermodynamic and kinetic stabilities of the resulting Gd3+ complex.",
author = "E. Brucher and S. Cortes and F. Chavez and Sherry, {A. D.}",
year = "1991",
language = "English (US)",
volume = "30",
pages = "2092--2097",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "9",

}

TY - JOUR

T1 - Synthesis, equilibrium, and kinetic properties of the gadolinium(III) complexes of three triazacyclodecanetriacetate ligands

AU - Brucher, E.

AU - Cortes, S.

AU - Chavez, F.

AU - Sherry, A. D.

PY - 1991

Y1 - 1991

N2 - Three new 10-membered-ring triaza tricarboxylate ligands have been synthesized and the formations of their Gd3+ complexes examined. The ligands 1,4,7-triazacyclodecane-N,N′,N″-triacetate (DETA3), 9-methyl-1,4,7-triazacyclodecane-N,N′,N″-triacetate (MeDETA3-), and 9,9-dimethyl-1,4,7-triazacyclodecane-N,N′,N″-triacetate (Me2DETA3-) have an unusually high first protonation constant (log K1 ≈ 14-15), and evidence is presented for the formation of a strongly hydrogen-bonded proton between the two nitrogens that share the propylene bridge in the monoprotonated forms of these chelates. Exchange of the hydrogen-bonded proton is slow below 0°C, and its 1H NMR signal has been detected. Complexation with Gd3+ is also slow, preventing determination of metal ion-ligand stabilities by potentiometry. Conditional stability constants for Gd(DETA), Gd(MeDETA), and Gd-(Me2DETA) were measured by using a proton relaxivity technique and compared with similar data for the 9-membered-ring macrocyclic complex Gd(NOTA). The rates of formation of Gd(DETA) and Gd(MeDETA) are similar, while Gd(Me2DETA) forms more slowly. The rate-determining step of complexation is proton loss and rearrangement of a monoprotonated intermediate, formed in a fast preequilibrium reaction. Dissociation of the complexes takes place both in a spontaneous fashion and through a proton-assisted pathway. The rate of both processes decreases in the order Gd(Me2DETA) ≫ Gd(NOTA) > Gd(DETA) > Gd(MeDETA). An increase in ring size from 9 to 10 and substitution of a methyl group onto a ring carbon of the ligand lead to increased kinetic stabilities of the complexes. The substitution of two methyl groups onto a ring carbon, however, results in a significant decrease in both the thermodynamic and kinetic stabilities of the resulting Gd3+ complex.

AB - Three new 10-membered-ring triaza tricarboxylate ligands have been synthesized and the formations of their Gd3+ complexes examined. The ligands 1,4,7-triazacyclodecane-N,N′,N″-triacetate (DETA3), 9-methyl-1,4,7-triazacyclodecane-N,N′,N″-triacetate (MeDETA3-), and 9,9-dimethyl-1,4,7-triazacyclodecane-N,N′,N″-triacetate (Me2DETA3-) have an unusually high first protonation constant (log K1 ≈ 14-15), and evidence is presented for the formation of a strongly hydrogen-bonded proton between the two nitrogens that share the propylene bridge in the monoprotonated forms of these chelates. Exchange of the hydrogen-bonded proton is slow below 0°C, and its 1H NMR signal has been detected. Complexation with Gd3+ is also slow, preventing determination of metal ion-ligand stabilities by potentiometry. Conditional stability constants for Gd(DETA), Gd(MeDETA), and Gd-(Me2DETA) were measured by using a proton relaxivity technique and compared with similar data for the 9-membered-ring macrocyclic complex Gd(NOTA). The rates of formation of Gd(DETA) and Gd(MeDETA) are similar, while Gd(Me2DETA) forms more slowly. The rate-determining step of complexation is proton loss and rearrangement of a monoprotonated intermediate, formed in a fast preequilibrium reaction. Dissociation of the complexes takes place both in a spontaneous fashion and through a proton-assisted pathway. The rate of both processes decreases in the order Gd(Me2DETA) ≫ Gd(NOTA) > Gd(DETA) > Gd(MeDETA). An increase in ring size from 9 to 10 and substitution of a methyl group onto a ring carbon of the ligand lead to increased kinetic stabilities of the complexes. The substitution of two methyl groups onto a ring carbon, however, results in a significant decrease in both the thermodynamic and kinetic stabilities of the resulting Gd3+ complex.

UR - http://www.scopus.com/inward/record.url?scp=0001067799&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0001067799&partnerID=8YFLogxK

M3 - Article

VL - 30

SP - 2092

EP - 2097

JO - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 9

ER -